История создания конденсатора. Конденсатор: применение и виды Первый конденсатор

Конденсатор , кондер , кондюк - так его называют бывалые” специалисты один из самых распространенных элементов применяемое в различных электрических цепях. Конденсатор способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейший конденсатор состоят из двух пластинчатых электродов, разделенных диэлектриком, на этих электродах накапливается электрический заряд разной полярности, на одной пластин будет положительный заряд на другой отрицательный.

Принцип работы конденсатора и его назначение - постараюсь кратко и предельно понятно ответить на эти вопросы. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь.

При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это - конденсатор постоянной емкости, обозначается он так -

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть - металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Электролитический конденсатор

Следующий распространенный тип конденсаторов это - полярные электролитические конденсаторы , его изображение на электрической схеме выглядит так -

Электролитический конденсатор так же можно назвать постоянным конденсатором, потому, что их емкость не меняется.

Но электролитические конденсаторы имеют очень важно отличие, знак (+) возле одного из электродов конденсатора говорит о том, что это полярный конденсатор и при подключении его в цепь нужно соблюдать полярность. Плюсовой электрод необходимо подключить к плюсу источника питания, а минусовой (который без плюсика) соответственно к отрицательному - (на корпусе современных конденсаторов наносят обозначение минусового электрода, а вот плюсовой не обозначают никак).


Не соблюдение этого правила может привести к выходу конденсатора из строя и даже взрыву, сопровождающемуся разлетом бумаги фольги и нехорошим запахом (от конденсатора конечно…). Электролитические конденсаторы могут иметь очень большую емкость и соответственно накапливать, довольно большой потенциал. Поэтому электролитические конденсаторы даже после отключения питания таят в себе опасность, и при неосторожном обращении ты можешь получить сильный удар электрического тока. Поэтому после снятия напряжения для безопасной работы с электрическим устройством (ремонте электроники , настройке, и т.д.) электролитический конденсатор необходимо разрядить, замкнув накоротко его электроды, (делать это нужно специальным разрядником) особенно это касается конденсаторов большой емкости которые установлены на блоках питания, где есть высокое напряжение.

Конденсаторы переменной емкости.


Как ты понял из названия переменные конденсаторы могут изменять свою емкость - например при настройке радиоприемников. Еще совсем недавно для настройки радиоприемников на нужную станцию использовались только конденсаторы переменной емкости, вращая ручку настройки приемника тем самым изменяли емкость конденсатора. Переменные конденсаторы используются и посей день в простых недорогих моделях приемников и передатчиков. Конструкция переменного конденсатора очень простая. Конструктивно он состоит из статорных и роторных пластин, роторные пластины подвижные и входят в статорные е касаясь последних. Диэлектриком в таком конденсаторе является воздух. При входе статорных пластин в роторные емкость конденсатора увеличивается, при выходе роторных пластин емкость уменьшается. Обозначение переменного конденсатора выгляди так -

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы нашли широкое применение во всех областях электротехники, они используются в различных электрических цепях.
В электроцепи переменного тока они могут служить в качестве ёмкостного сопротивления. Возьмем такой пример, при последовательном подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.


Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим качествам, конденсаторы применяются в качестве фильтров, в цепях подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных импульсных схемах, где требуется быстрое накопление и отдача большого электрического заряда, в ускорителях, фотовспышках, импульсных лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, создавая мощный импульс. Конденсаторы применяют для сглаживания пульсаций при выпрямлении напряжения. Способность конденсатора сохранять заряд длительное время дает возможность использовать их для хранения информации. И это только очень краткий перечень всего где может применяться конденсатор.

Продолжая занятия электротехникой, ты откроешь для себя еще много интересного в том числе и о работе и применению конденсаторов. Но, и этой информации, тебе будет достаточно для общего понимания и продвижения дальше.

Как проверить конденсатор

Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр . Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки - к ак прозванивать мультиметром , как и при проверке резисторов - что такое резистор . Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Электролитические конденсаторы проверяют следующим образом - Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем. После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.


Емкость конденсатора измеряется в Фарадах, 1 фарад - это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах (nF). Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе. Желаю успеха и настойчивости!

По другой версии (как известно правдоподобность исторических фактов очень частот достаточно сложно доказать) Мушенбрук специально пытался «зарядить» воду в банке. В то время ученые и исследователи еще считали, что электричество – это некая жидкость, которая находится в любом заряженном теле или предмете. Так вот, ученый специально опустил электрод электрической машины в воду, а затем взяв одной рукой банку, а другой случайно прикоснувшись к электроду он опять таки ощутил мощнейший удар током . А поскольку опыт проводился в городе Лейдене, то эту банку – прототип конденсатора, стали называть Лейденской банкой.

Есть и еще одна версия происшедшего события. Примерно в то же время – в 1745 году настоятель собора в Померании – немецкий священнослужитель Эвальд Юген фон Клейст пытался провести научный опыт с целью «зарядить» святую воду электричеством и сделать ее тем самым еще более полезной. Он также использовал электрическую машину, которые в то время были достаточно популярными. Правда, он не опускал в банку сам электрод, а использовал в качестве проводника металлический гвоздь. Случайно дотронувшись потом до гвоздя от также ощутил всю силу электричества.

В таком виде конденсатор просуществовал следующие 200 лет . Ученые и исследователи его немного доработали – банку изнутри и снаружи покрыли металлом, а воду убрали, и использовали ее для различных опытов в области изучения электричества.

Кстати слово «емкость», которое сейчас используется для обозначения номинала современных конденсаторов – это дань прошлому. Ведь изначально этот элемент был стеклянным сосудом (банкой), который имел некий объем или емкость. Кстати, Лейденские банки были разных объемов и чем больше, тем больше по площади электроды покрывали их изнутри и снаружи. , как известно, даже из школьного курса физики – чем больше по площади электроды конденсатора, тем больше его емкость.

  • Перевод

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.


Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

В повседневной жизни каждый человек пользуется преобразователями напряжения, адаптерами и блоками питания. Но, мало кто задумывается, что главную функцию в перечисленных устройствах выполняют конденсаторы. Его в народе еще называют «электролитами». Их главной особенностью являются небольшие габариты и способность накапливать заряд до уровня своей емкости.

В области радиотехники и электрики конденсатором электролитическим называют элемент с оболочкой диэлектрика, сделанной из оксида металла, называемым анодом, и внутренней емкостью для накопления заряда, называемой катодом. За счет такого свойства они имеют широкое применение в электротехнических приборах и радиоустройствах. Конденсаторы присутствуют в схемах радиоприемников, телевизоров, стиральных машин, кондиционеров, компьютерной техники и во многих других приборах.

История появления и развития

В 1875 году ученый из Франции Eugène Adrien Ducretet открыл электрохимический процесс в некоторых металлах. Образцами исследования стали тантал, ниобий, цинк, титан, кадмий, алюминий, сурьма и другие. Указанные образцы употреблялись в виде анода (положительного полюса средства питания). Под действием электрического поля на их поверхностями появлялся слой оксида, имеющий вентильные характеристики.

В 1896 году ученый Карол Поллак направил в бюро по выдаче патентов заявку на придумывание конденсатора. Он доказал собственным элементом, что электрохимические процессы должны обладать определенной полярностью на границе металла с диэлектриком для формирования оксидного образования. Несоблюдение такой полярности приводит к диэлектрическим потерям и короткому замыканию.

В России длительное время считалось изготовление электролитических конденсаторов экономически не выгодным. Хотя в научных изданиях было много доводов, какие можно применить технологии для наладки производства. Первые серьезные наработки в вопросе выпуска электролитических конденсаторов появились в нашем государстве в 1931 году. Их емкость была заполнена жидким электролитом. Сегодня производство данных элементов поставлено на широкий поток. Изготовлением электролитических конденсаторов занимаются многие фирмы с мировым именем.

Варианты конденсаторов по применению

Как известно из школьной программы физики, конденсаторы – это полярные приспособления. Они начинают функционировать при направлении тока в одном направлении. Поэтому на практике их включают в схемы с цепями неизменного или пульсирующего напряжения.

Применение в цепях неизменного напряжения

Свойства конденсатора такой конструкции используют:

  1. для накопления электрической энергии в импульсных генераторах, импульсных источниках света, а также для намагничивания магнитотвердых элементов в процессе физических опытов;
  2. для поднятия тока до определенной отметки в сварочных агрегатах, рентгеновских установках и приборах для копирования;
  3. для точной работы схем аналоговой памяти или аналоговой развертки;
  4. для образования инструмента питания в электронных приборах и электрических приводах.

В цепях неизменного напряжения с пульсирующим наложением

Характеристики конденсаторов в цепях постоянного напряжения с пульсирующим наложением применяют:

  1. для создания полосовых фильтрующих участков совместно с резисторами и катушками индуктивности;
  2. для шунтирования элементов схемы электронного типа по меняющемуся току;
  3. для соединения участков цепи по переменному току с элементами, функционирующими на постоянной составляющей;
  4. для генерации пилообразного и прямоугольного напряжения в схемах релаксационного типа генератора;
  5. для выпрямления напряжения в выпрямителях.

Назначение в схемах изменяемого напряжения

Для схем переменного тока производителями конденсаторов созданы элементы, имеющие неполярную емкость. В своей конструкции они имеют дополнительные элементы и увеличенные габариты. Они бывают разной ёмкости, наполненной концентрированными щелочными веществами и кислотами.

Они применяются:

  1. Для подъема качества электрической энергии и увеличения коэффициента мощности. Например, алюминиевые электролитические конденсаторы снижают уровень реактивной составляющей, что повышает коэффициент мощности до 0,999;
  2. В инверторных схемах и устройствах с выпрямителями на тиристорах для уменьшения влияния магнитных полей;
  3. Для улучшения пусковой способности двигателя асинхронного типа. Практически все пусковые схемы однофазных электродвигателей содержат конденсаторы.

По способу заполнения переменный конденсатор делится на виды:

  • с жидкостным диэлектриком;
  • с сухим наполнением;
  • с оксидными полупроводниковыми параметрами конденсаторов;
  • оксидно-металлического исполнения.

Анод электролитических конденсаторов изготавливается из фольги алюминия, ниобия или тантала. Конденсатор с переменной емкостью оксидно-полупроводникового вида имеет катод в виде шара полупроводника, нанесенного на оксидный слой.

Конструкция конденсаторов

Разного типа и размеров конденсаторы сделаны из двух элементов – это обкладки и емкость (расстояние между обложками), заполненное диэлектрическим веществом. Емкость считается по формуле:

C = ee0S/d, где:

  • S – значение площади обкладки;
  • d – значение расстояния между пластинками;
  • e0 –электрическая составляющая, устанавливающая напряженность электрического поля вакуумного пространства;
  • е – диэлектрическая проницаемость.

Особенность электролитических конденсаторов заключается в том, что они содержат слой электролитического вещества между двумя обложками из фольги, где одна из них покрыта пленкой полупроводникового оксида. Такие электролиты имеют внутри обкладки, сложены вместе с разделяющим бумажным слоем, пропитанным электролитом. От ее толщины зависит емкость конденсатора. Верхний шар покрыт также разделительным бумажным слоем. Все в комплекте свернуто «в трубочку» и находится в металлическом корпусе.

По краям фольги припаяны металлические пластинки в виде контактов. Они предназначены для соединения с другими элементами схемы. Причем вывод с положительным потенциалом покрыт оксидным шаром. Функцию катода выполняет слой электролита, соединенный со второй обкладкой.

С помощью электрохимической коррозии поверхности обкладки (рифление) в процессе изготовления увеличивают площадь обкладки. С помощью такой технологии создаются конденсаторы большой емкости.

Обычно рассматриваемый элемент безаварийно функционирует при нормальной температуре и неискаженном напряжении. Например, при увеличении напряжения выше нормы происходит образование нового слоя оксидов, сопровождаемое выделением тепла и газообразованием. В результате давление в корпусе резко возрастает, и его прочность не в силах справиться с такой ёмкостью. Это может привести к взрыву и разрушению других элементов цепи.

Многие фирмы изготавливают конденсаторы с защитной мембраной. Она разламывается под действием образования газов и блокирует взрыв. Маркировка таких конденсаторов заключается в нанесении насечки в виде буквы «Т», «Y» или знака «+».

Дешифрование цифр и букв на поверхности изделия

Для правильной расшифровки обозначений на корпусе разных элементов требуется знать единицы измерения. Для конденсаторов следует запомнить, что емкость измеряется в фарадах (Ф). Она имеет такие соотношения:

  • 1мкФ (микрофарад)F=10¯⁶F;
  • 1мФ (миллифарад)F=10¯³F;
  • n(нанофарад)F=10¯⁹;
  • p(пикофарад)F=10¯¹²F.

Маркировка конденсаторов больших параметров указывается прямо на корпусе элемента. В некоторых конструкциях надписи имеют разные обозначения. В таких случаях лучше ориентироваться по значениям, указанным выше.

На некоторых модификациях маркировка нанесена заглавными буквами. Например, вместо 1мФ стоит МF. Также можно встретить, что маркировка содержит набор букв fd, что означает фарад. Кроме этого в шифре содержится информация, допускающая отклонение от номинала в процентном соотношении. Например, если маркировка содержит 6000uF + 50%-70%, то следует понимать, что это отличается от заданного номинала на 50%-70%. То есть можно применять конденсатор на 9000uF или на 1800uF. Если проценты отсутствуют, то требуется найти букву. Обычно она выглядит отдельным от емкости обозначением. Каждая буква допускает отклонение от номинала.

После определения номинала и разрешенной погрешности нужно перейти к определению значения напряжения. Оно обозначается цифрами совместно с буквами, такими как V, VDC, WV или VDCW. Обозначение WV означает рабочее напряжение. Цифры указывают на максимальные разрешенные допуски.

Важно знать! Если на поверхности нет значения, указывающего номинал напряжения, то такие конденсаторы можно применять в низковольтных цепях схемы. Также нужно запомнить, что конденсаторы, работающие на переменном напряжении, нельзя использовать в схемах постоянного напряжения, и наоборот.

Для определения полярности выводов на корпусе нанесены знаки «+» и «–». Если их нет, то конденсатор подключается в цепь любой стороной.

Цифровая расшифровка

Цифры на корпусе имеют собственную расшифровку. Когда указаны только две цифры и одна буква, то сочетание цифр указывают на емкость. Все остальные кодировки нужно понимать с нестандартным подходом. Они в основном зависят от конструкции элемента.

Третья цифра является множителем нуля. Поэтому расшифровка выполняется по конечной цифре. Если она находится в пределе от 0 и до 6, то к первым цифрам прибавляются нули в числе указанной третьей цифры. Например, 373 означает 37000.

Когда последняя цифра выходит за предел 0-6, например, стоит 8, то первая цифра должна умножиться на 0,01. Таким образом, шифр 378 обозначает 0,37. Когда в конце стоит цифра 9, то сочетание первых двух цифр умножается на 0,1. Обозначение 379 нужно читать как 3,7.

Когда из сочетания цифр с емкостью все понятно, то нужно знать единицу измерения.

Важно помнить! Маленькие конденсаторы измеряются в пикофарадах, а большие элементы – в микрофарадах.

Буквенная кодировка

Букву R в первых двух символах следует понимать под обозначением запятой, применяемой в обозначении десятичной дроби. Например, шифр 4R1 читается как 4,1 пФ. Если в маркировке содержаться буквы p, n или u, то их тоже следует менять на запятую. Например, n61 означает 0,61 нано фарад.

Смешанная маркировка

В такой код на корпусе конденсатора входят буквы и цифры, чередуя друг друга. Обычно это наносится по схеме «буква – цифра – буква». Первая буква указывает на рабочую температуру надежного состояния конденсатора. Вторая цифра – это предел допустимой температуры.

Третья буква означает изменение емкости в пределе от минимальной температуры и до максимальной допустимой температуры. Если стоит буква «А», то это точный показатель. Его погрешность равна 0,1%. При наличии буквы «V» показатель емкости колеблется в пределе 22%-82%. Очень часто встречаются конденсаторы с буквой «R», что означает 15% отклонения емкости от изменения температуры.

Изменение параметров в процессе эксплуатации

Чтобы понимать, какие хорошие конденсаторы, а какие нет, нужно знать общие характеристики, и помнить, как параметры зависят друг от друга. Например, способность в рабочем режиме кпе выделять газы требует при монтаже схемы создавать запас допустимого напряжения в пределе 0,5-0,6 его значения. Особенно это важно, когда схема функционирует в среде с повышенным температурным режимом.

С использованием конденсатора в цепях меняющегося тока обязательно учитывается зависимость от рабочей частоты. Обычно рабочая частота меняющегося напряжения не должна отклоняться от 50 Гц. Для более высоких частот нужно включать конденсаторы с более низким допустимым напряжением. В обратном случае будет появляться сильный нагрев диэлектрика, что приведет к разрыву корпуса.

Элементы с большой емкостью и малыми значениями токов утечки способны длительно сохранять заряд. Поэтому важно для безопасности параллельно подключать резистивный элемент с сопротивлением не меньше 1 Мом и мощностью 0,5 Вт.

Электрические конденсаторы служат для накопления электрической энергии. Без них не будет функционировать ни одна схема радио,- и телевизионного приемника. Появление микросхем изменила функцию конденсаторов. Многие из них изготавливаются в интегрированном виде.

Видео

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.