Курс лекций по химии нефти и газа. Предмет химии нефти и газа. Нефть и газ как природные объекты, источники энергии и сырье для переработки. Происхождение нефти. Химические продукты из нефти

Уфимский государственный нефтяной технический

университет

А.М. Сыркин, Э.М. Мовсумзаде

Основы химии нефти и газа

Учебное пособие

УДК 665.6 (075.8)

ББК 6 П 7.43

Утверждено редакционно-издательским советом УГНТУ

в качестве учебного пособия.

Рецензенты:

Зам. директора института органической химии УНЦ РАН,

доктор химических наук, профессор И.Б. Абдрахманов

Директор ГУП «Нефтехимпереработка» доктор технических наук, профессор Э.Г. Теляшев

Профессор кафедры разработки и эксплуатации нефтегазовых месторождений, доктор технических наук Зейгман Ю.В.

С 95 Сыркин А.М., Мовсумзаде Э.М.

Основы химии нефти и газа: Учеб. пособие. – Уфа: Из-во УГНТУ, 2002. – 109 с.

ISBN5–7831–0495–7

В учебном пособии рассматриваются основные гипотезы происхождения нефти, физико-химические свойства нефтей, их классификации, свойства и реакции основных классов соединений, входящих в состав нефти и газа. Рассматриваются способы переработки нефти и газа для получения различных нефтепродуктов – моторных топлив, смазочных масел и продуктов нефтехимии, пути промышленного использования нефтяных компонентов.

Учебное пособие предназначено для студентов специальности «Нефтегазовое дело».

УДК 665.6 (075.8)

ББК 6 П 7.43

ISBN5–7831–0495–7

© Уфимский государственный нефтяной

технический университет, 2002

© Сыркин А.М., Мовсумзаде Э.М., 2002

Учебное издание

Сыркин Алик Михайлович

Мовсумзаде Эльдар Мирсамедович

Основы химии нефти и газа

Редактор А.А. Синилова

Подписано в печать 30.10.02. Бумага офсетная № 2. Формат 60х84 1/16

Гарнитура «Таймс». Печать трафаретная. Усл.-печ. л. 7,0. Уч.-изд. л. 6,2

Тираж 300 экз. Заказ

Издательство Уфимского государственного нефтяного технического университета

Типография Уфимского государственного нефтяного технического

университета

Адрес издательства и типографии:

450062, Г. Уфа, ул. Космонавтов, 1 Предисловие

Одной из важнейших задач курса химии нефти и газа является изучение состава нефтей и природных газов с помощью физических и физико-химических методов исследования. Химия нефти занимается также изучением физико-химическихъ свойств углеводородов и неуглеводородных компонентов нефти в связи с их строением.

Состав нефтей и газов зависит от геологических и геохимических условий образования и залегания нефтей. Поэтому изучение химического состава нефтей имеет очень большое значение для понимания геохимических процессов превращения нефтей в земной коре. Состав нефтей определяет, в свою очередь, способы их добычи и транспорта, направления и особенности их переработки для получения разнообразных продуктов.

При исследовании нефтей определяют: элементный химический состав, групповой состав, т.е. содержание в нефтях различных классов и групп соединений, индивидуальный химический состав отдельных соединений и изотопный состав нефтей.

    Общая характеристика нефти и газа

Нефть представляет собой взаимный сопряжённый раствор углеводородов и гетероатомных органических соединений. Надо подчеркнуть, что нефть – это не смесь веществ, а раствор углеводородов и гетероатомных органических соединений. Это означает, что при изучении нефти к ней надо подходить как к раствору.

Нефть – не просто растворённое вещество в растворителе, а взаимный раствор ближайших гомологов и иных соединений друг в друге. Наконец, сопряжённым раствор назван в том смысле, что, растворяясь друг в друге, ближайшие по строению структуры образуют систему, представляющую нефть в целом.

Если нарушается сопряжённое взаимное растворение ближайших компонентов, то может частично разрушиться и система нефти. Например, если разгонкой убрать из нефти средние фракции, то при соединении головных фракций лёгкого бензина с остаточными тяжёлыми фракциями может и не произойти растворения, а часть смолистых веществ выпадет в осадок – система сопряжённого взаимодействия будет нарушена.

Собственно нефть представляет собой жидкий ископаемый минерал, залегающий в пористых осадочных породах земной коры, в трещинах, расселинах и других пустотах материнских горных пород (гранитов, гнейсов, базальтов и т.п.)

Нефть представляет собой тёмно-коричневую, иногда почти бесцветную, а иногда даже имеющую чёрный цвет жидкость.

Нефть является горючим ископаемым наряду с каменным углем, бурым углем и сланцами, которые получили название каустоболитов. В отличие от других горючих ископаемых нефть состоит из готовой смеси различных углеводородов, тогда как для получения углеводородов из твёрдых горючих ископаемых требуется специальная термическая обработка. Поэтому нефть является ценнейшим сырьём как для получения разнообразных моторных топлив и смазочных масел, так и продуктов нефтехимического синтеза.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Уфимский государственный нефтяной

технический университет»

Филиал УГНТУ в г. Октябрьском

Кафедра информационных технологий,

математики и естественных наук

В. Р. Зайлалова учебное пособие по курсу «химия нефти и газа»

Утверждено Редакционно-издательским советом УГНТУ

в качестве учебного пособия

Рецензенты:

Ассоциация геолого-геофизических предприятий по научно-техническому и информационному сотрудничеству «Геоинформтехнология» (генеральный директор, профессор, доктор технических наук Ю. А. Гуторов).

Доцент, кандидат технических наук А. М. Гильманова (кафедра ИТМЕН, Филиал УГНТУ в г. Октябрьском).

Зайлалова В. Р.

З 17 Учебное пособие по курсу «Химия нефти и газа». – Уфа: Изд-во УГНТУ, 2014. –132 с.

Данное учебное пособие составлено в соответствие с ФГОС-3 и предназначено для студентов направления «Нефтегазовое дело» всех форм обучения. В нем рассмотрены все основные разделы программы курса «Химия нефти и газа». Раздел «Классификация углеводородов» представлен в табличном варианте, в нем кратко изложены состав, строение, физические и химические свойства, получение углеводородов. Пособие позволяет самостоятельно подготовиться к сдаче экзамена по курсу.

© Уфимский государственный

нефтяной технический университет, 2014

© Зайлалова В. Р., 2014

Введение

Нефть - это горная порода. Она относится к группе осадочных пород вместе с глинами, известняками, каменной солью и др. Мы привыкли считать, что порода - это твердое вещество, из которого состоят земная кора и более глубокие недра Земли. Оказывается, есть и жидкие породы, и даже газообразные. Одно из важнейших свойств нефти - способность гореть. Таким же качеством обладает и ряд осадочных пород: торф, бурый и каменный уголь, антрацит. Все вместе горные породы образуют особое семейство, получившее название каустобиолитов (от греческих слов «каустос» - горючий, «биос» - жизнь, «литое» - камень, т. е. горючий органический камень). Среди них различают каустобиолиты угольного ряда и нефтяного ряда, последние называются битумами. К ним относится и нефть.

Нефть обычно встречается в виде скоплений в пористых породах - известняках, песчаниках. К сожалению, полностью извлечь нефть из месторождений не удается. Так называемая первичная добыча осуществляется при естественном давлении и позволяет извлечь до 25–30% нефти, вторичная добыча несколько увеличивает эффективность освоения месторождения (до 35%) и проводится накачкой воды (иногда пара). Сейчас во всем мире интенсивно проводятся исследования по повышению нефтеотдачи пластов. Третичная добыча предполагает дополнительное извлечение нефти с помощью новых методов, из которых следует упомянуть такие, как использование поверхностно-активных веществ, полимерных растворителей, подачу CO 2 , термические способы (так называемое внутрипластовое горение). Ясно, что осуществление третичной добычи имеет огромное экономическое значение.

История развития человеческого общества прошла два этапа развития производительных сил и вступает в третий. Первый из них позволил человеку взять под свой контроль производство продуктов питания и повысил выживаемость людей. Второй дал качественно новую энергетическую базу, обусловив переход от мускульной силы к использованию машин. Основой такой энергетической базы стала нефть. Мы являемся свидетелями того, как человечество вступает в третий этап. Наука при этом становится производительной силой общества, но нефть по-прежнему будет играть решающую роль в структуре энергетической базы.

В настоящее время определились три основных направления использования нефти: получение энергетического сырья, получение материалов с заданными свойствами, производство химических и фармацевтических продуктов. Развитие многих отраслей промышленности и транспорта сейчас зависит от нефти. Мы рождаемся и живем в мире продуктов и вещей, полученных из нефти. В истории человечества были каменный и железный периоды. Как знать, может быть, историки назовут нефтяным наш период, так же, как будущий - термоядерным.

Нефть создала не только новый уровень производительных сил общества, но и новую отрасль науки - нефтехимию, возникшую на стыке органической химии, химии нефти и физической химии. Нефтехимия стала важной отраслью перерабатывающей промышленности, производящей химические продукты из нефти, попутных и природных газов и их отдельных компонентов. На долю нефтехимии приходится свыше четверти всей химической продукции мира. Ориентация экономики развитых стран на нефтяное сырье позволила совершить в середине XX века качественный скачок и стать одной из самых важных отраслей тяжелой промышленности.

Первые наши синтетические каучуки делались исключительно из спирта, который получали из пищевого сырья. Сейчас же каучуки синтезируются из нефтехимического сырья. Получаемая из каучука резина идет в основном на шины для автомобилей, самолетов, колесных транспортов.

Из нефтяного сырья производят и многие другие вещества, технология изготовления которых первоначально основывалась на химической переработке пищевых продуктов.

Нефтехимия экономит не только пищевые продукты, но и значительные средства. Один из важнейших мономеров для каучуков - дивинил - при производстве из бутана обходится примерно вдвое дешевле, чем при его получении из пищевого спирта.

В конце 50-х годов на базе нефтехимического сырья в нашей стране изготавливалось лишь 15% пластмасс и синтетических смол, сейчас - больше 75%.

Нефтехимия производит также ароматические соединения, органические кислоты, гликоли, сырье для производства химических волокон, удобрения. В последние два десятилетия у нефтехимии появилась еще одна группа ранее не свойственных ей производств. Это - получение белково-витаминных концентратов методом микробиологической депарафинизации нефти. Концентрат представляет собой клеточное вещество микроорганизмов, способных питаться нефтью или отдельными ее фракциями. После соответствующей очистки эти концентраты пригодны для откорма сельскохозяйственных животных.

В наши дни в промышленно развитых странах вся добываемая и покупаемая нефть идет на переработку. Но при этом около 90% всей массы нефтепродуктов - топливо и масла, и лишь 10% - сырье для нефтехимии. Таким образом, нефть не только топливо, но и основа многих совершенно необходимых нам топлив, прежде всего моторных. И потребность в них начинает расти.

Многочисленные прогнозы о развитии общества и его производительных сил при всей разобщенности и противоречивости их отправных позиций едины в одном - оскудевание природных сырьевых ресурсов, в первую очередь нефти, станет определяющим фактором в тенденциях развития различных отраслей промышленности.

Преодолеть грядущую кризисную ситуацию в обеспечении невозобновляемыми природными ресурсами можно двумя путями:

    экономно и разумно использовать природные ресурсы;

    создать новые сырьевые источники, заменяющие традиционное природное сырье.

Знание химического состава природных нефтяных систем служит отправной точкой для прогнозирования их фазового состояния и свойств фаз при различных термобарических условиях, соответствующих процессам добычи, транспортировки и переработки нефтяных смесей. Тип смеси - нефть, газоконденсат или газ - также зависит от ее химического состава и сочетания термобарических условий в залежи. Химический состав определяет возможное состояние компонентов нефтяных систем при данных условиях - молекулярное или дисперсное.

Петров Ал. А., написавший серию хорошо известных специалистам монографий, посвященных химическому составу нефтей, утверждает, что в нефтях идентифицировано до 1000 индивидуальных углеводородов состава С1-С40.

Нефтяные системы отличаются многообразием компонентов, способных находиться в молекулярном или дисперсном состоянии в зависимости от внешних условий. Среди них встречаются наиболее и наименее склонные к различного рода межмолекулярным взаимодействиям (ММВ), что в итоге обусловливает ассоциативные явления и исходную дисперсность нефтяных систем при нормальных условиях.

Химический состав для нефти различают как элементный и вещественный.

Основными элементами состава нефти являются углерод (83,5-87 %) и водород (11,5-14 %). Кроме того, в нефти присутствуют:

сера в количестве от 0,1 до 1-2 % (иногда ее содержание может доходить до 5-7 %, во многих нефтях серы практически нет);

азот в количестве от 0,001 до 1 (иногда до 1,7 %);

кислород (встречается не в чистом виде, а в различных соединениях) в количестве от 0,01 до 1 % и более, но не превышает 3,6 %.

Из других элементов в нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %.

В вещественном плане нефть в основном состоит из углеводородов и гетероорганических соединений. Среди последних основное внимание следует обратить на смолоасфальтеновые вещества (CAB), которые можно рассматривать как концентрат наиболее склонных к межмолекулярным взаимодействиям соединений.

Углеводородные соединения

Углеводороды (УВ) представляют собой органические соединения углерода и водорода. В нефти в основном содержатся следующие классы углеводородов.

Алканы или парафиновые углеводороды - насыщенные (предельные) УВ с общей формулой CnH2n+2. Содержание их в нефти составляет 2 - 30-70 %. Различают алканы нормального строения (н-алканы - пентан и его гомологи), изостроения (изоалканы - изопентан и др.) и изопреноидного строения (изопрены - пристан, фитан и др.)

В нефти присутствуют газообразные алканы от С1 до С4 (в виде растворённого газа), жидкие алканы С5 - С16, составляют основную массу жидких фракций нефти и твёрдые алканы состава С17 - С53 и более, которые входят в тяжёлые нефтяные фракции и известны как твёдые парафины. Твёрдые алканы присутствуют во всех нефтях, но обычно в небольших количествах - от десятых долей до 5 % (масс.), в редких случаях - до 7-12 % (масс.). В Томской области нефть Чкаловского месторождения содержит до 18 % твердых парафинов.

В зависимости от внутрипластовых условий и компонентного состава пластовой залежи определяется тип месторождения - газовое, газоконденсатное или нефтяное. Основные компоненты чисто газовых месторождений - низкомолекулярные алканы - метан, этан, пропан и бутан (н- и изостроения) в индивидуальном виде при нормальных условиях (0,1 МПа и 20°С) являются газами. В нефтяных природных газах доминируют алканы.

Кроме алканов в состав природных газов могут входить оксид (СО) и диоксид углерода (СО2), сероводород (Н2S), азот (N2), а также инертные газы - Не, Аг, Ne, Xe. В чисто газовых залежах почти полностью отсутствует конденсат (Табл. 2.1).

Если при изотермическом снижении давления в пласте тяжелые компоненты природного газа выделяются в виде жидкой фазы (конденсата), то такие смеси называют газоконденсатными. При этом часть конденсата может безвозвратно теряться в породе. Содержание конденсата (С5 и высшие) в газе зависит от его состава и пластовых условий (температуры и давления, достигающее 25-40 МПа).

Количественным критерием отнесения залежи к газоконденсатным месторождениям служит газоконденсатный фактор, равный количеству газа (м3) при нормальных условиях, в котором растворен 1 м3 конденсата при пластовых условиях. Залежи, газоконденсатный фактор которых не превышает 104, обычно относят к газоконденсатным.

Таблица 2.1.

Химический состав газов различных месторождений

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 СО2 другие компоненты

Чисто газовые месторождения

Уренгойское 95,1 1,1 0,3 0,07 0,03 0,4 3,0

Медвежье 98,3 0,3 0,1 0,15 - 0,1 1,0

Саратовское 94,7 1,8 0,2 0,1 - 0,2 3,0

Газоконденсатные месторождения

Оренбургское 84,8 4,5 1,4 0,3 1,5 1,15 9,0

Вуктыльское 79,8 8,7 3,9 1,8 6,4 0,1 4,3

Ленинградское 86,9 6,0 1,6 1,0 0,5 1,2 2,8

Попутные газы газонефтяных месторождений

Ромашкинское 39,0 20,0 18,5 6,2 4,7 0,1 11,5

Небит-Дагское 85,7 4,0 3,5 2,0 1,4 2,1 1,3

Мухановское 30,1 20,2 23,6 10,6 4,8 1,5 9,2

Нефть в пласте также содержит газ. Количество растворенного газа в нефти характеризуется величиной "газосодержание" (Го). Газосодержание для пластовых нефтей колеблется от долей единицы до нескольких сотен м3/т. Попутные нефтяные газы при подъеме нефти на поверхность выделяются из нее, пока давление насыщения (Рнас) превышает атмосферное давление. В промысловой практике товарной нефтью считают ту часть пластовой нефти, которая остается в жидком состоянии после сепарации добываемой смеси (и отделения воды) и приведения ее к стандартным (или н.у.) условиям. Содержание в ней газов составляет менее 1 %.

Из нефти и природных газов выделены все алканы нормального строения, начиная от метана до гексатриаконтана С3бН74, однако имеются сведения, что н-алканы в нефтях образуют непрерывный гомологический ряд, простирающийся вплоть до С65-С68 а по другим данным -- и до С78.

Как правило, максимум объемного содержания н-алканов в нефтях приходится на н-гексан (1,8 %) и н-гептан (2,3 %), а затем содержание постепенно снижается, достигая 0,09 % для тритриаконтана С33Н68.

По другим данным практически для всех глубоко превращенных нефтей характерен унимодальный вид кривых распределения н-алканов с максимумом С10-С14 и с равномерным снижением концентраций высокомолекулярных н-алканов (по Петрову Ал.А.). Наблюдается тенденция к снижению содержания н-алканов с ростом температуры выкипания фракций.

В нефти присутствовать всевозможные изомеры алканов: моно-, ди-, три - , тетразамещенные. Из них превалируют в основном монозамещенные, с одним разветвлением. Метилзамещенные алканы по степени убывания располагаются в ряд: 2-метилзамещенные алканы > 3-метилзамещенные алканы > 4-метил-замещенные алканы.

К 60-м годам относится открытие в нефтях разветвленных алканов изопреноидного типа с метальными группами в положениях 2, 6, 10, 14, 18 и т. д. Обнаружено более двадцати таких УВ в основном состава С9-С20. Наиболее распространенными изопреноидными алканами в любых нефтях являются фитан С20Н42 и пристан С19Н40, содержание которых может доходтить до 1,0 -1,5 % и зависит от генезиса и фациальной обстановки формирования нефтей.

Таким образом, алканы в различных пропорциях входят в состав всех природных смесей и нефтепродуктов, а их физическое состояние в смеси - в виде молекулярного раствора или дисперсной системы - определяется составом, индивидуальными физическими свойствами компонентов и термобарическими условиями.

В составе нефтей твёрдые УВ - это многокомпонентные смеси, где наряду с алканами содержатся ароматические и нафтеновые углеводороды. Так, твердые углеводороды, выделенные из дистиллятной фракции (300-400°С) туймазинской нефти, состоят из 50 % н-алканов, 47,1 % нафтеновых УВ с боковыми цепями нормального строения и 2,9 % ароматических УВ с боковыми цепями нормального строения. По мере повышения температур выкипания фракций одной и той же нефти содержание твердых алканов уменьшается.

Атомы углерода в молекуле алкана связаны посредством ковалентной у-связи с постоянной (для свободных изолированных молекул в газовой фазе) длиной связи С-С, равной 0,154 нм, и валентным углом между С-С-связями, равным 112°. Молекулярные параметры н-алканов в газовой фазе несколько изменяются по мере роста числа атомов углерода в молекуле (табл. 2.2).

Таблица 2.2.

Геометрические размеры свободных молекул н-алканов

С2Н6 0,1534 0,1122 - 111,0

С3Н8 0,1532 0,1107 112,0

С4Ню 0,1531 0,1107 112,0 110,3

С5Н12 0,1531 0,1118 112,9 110,4

С6НН 0,1533 0,1118 111,9 109,5

С7Н16 0,1534 0,1121 112,6 109,8

С16Н34 0,1542 0,1130 114,6 110,4

По мнению М. Шахпаронова, обнаруживаемые различия обусловлены разрушением энергетически "невыгодных" и образованием "выгодных" внутримолекулярных водородных связей типа С-Н-С.

В то же время известно, что силы кристаллического поля могут существенно изменять конформацию и молекулярные параметры в результате образования межмолекулярных водородных связей. В конденсированных средах значения таких молекулярных параметров, как барьеры внутреннего вращения, разность энтальпий конформеров, межъядерные расстояния и валентные углы, должны отличаться от наблюдаемых для свободных молекул. В настоящее время различие геометрического строения молекул н-алканов в свободном и конденсированном состояниях еще мало изучено.

В рамках структурно-механического подхода н-алканы классифицируют по способности их молекул к независимой поворотной изомерии концевых метильных групп. Согласно этой классификации, начиная с алканов С8-С9, различают ко-роткоцепные (С8-С17), среднецепные (С18-С40) и длинноцепные (С40-С100) молекулы н-алканов, которые рассматривают как сложные системы с относительно некоррелированными движениями срединных и концевых групп. Знание критической длины цепи молекулы, в целом теряющей кинетическую подвижность по достижении определенной температуры в условиях предкристаллизации при переохлаждении, позволяет рассматривать молекулу как состоящую из независимых фрагментов.

Дисперсионное взаимодействие между молекулами н-алканов при структурно-механическом подходе определяется числом центров дисперсионного взаимодействия, достигающим в точках кристаллизации предельного значения. В рамках таких представлений получает объяснение давно известный факт альтернирования температур кристаллизации четных и нечетных н-алканов по мере роста числа углеродных (п) атомов (рис. 2.1).

Рис. 2.1.

Для нечетных изомеров н-алканов при п < 20 в результате расклинивающего влияния концевых СН3-групп наблюдается уменьшение числа центров дисперсионного взаимодействия в точках кристаллизации, что приводит к понижению температур кристаллизации. Для газообразных УВ, т.е., п < 4 ?Т не определялись.

В кристаллическом состоянии молекулы н-алканов располагаются параллельно. С повышением температуры и уменьшением энергии межмолекулярного взаимодействия расстояния между молекулярными цепями н-алканов увеличиваются, при этом сохраняется предпочтительная параллельная ориентация. В точке плавления расстояния между молекулярными цепями изменяются скачкообразно, при дальнейшем повышении температуры происходит активное раздвижение молекулярных цепей до тех пор, пока молекулы не обретут полную свободу вращения. Структурные исследования жидких н-алканов показывают, что при фиксированной температуре равновесное расстояние (0,56 нм) между ближайшими молекулами н-алканов по мере роста п обнаруживает тенденцию к укорочению, что связано с усилением межмолекулярных взаимодействий.

Алканы в нефтяных системах могут находиться в молекулярном или ассоциированном состояниях. Исследование методом малоуглового рассеяния рентгеновских лучей молекулярной структуры н-алканов в жидком состоянии показало, что их ассоциация происходит по поверхности молекул с помощью сил дисперсионного взаимодействия, а ассоциаты, например н-гептана, при нормальных условиях имеют форму дисков или пластин с размерами 130-200 ?.

Число молекул в ассоциате тем больше, чем ниже температура. Так, в гексадекане при 20°С (т. е. на 2°С выше температуры кристаллизации) число молекул в ассоциате равно 3, а в н-октане при -50°С (т. е. на 6°С выше температуры кристаллизации) - 31. Это объясняется ослаблением теплового движения молекул и усилением энергии молекулярного взаимодействия алканов с ростом длины цепи.

Циклоалканы или нафтеновые углеводороды - насыщенные алициклические УВ. К ним относятся моноциклические с общей формулой CnH2n, бициклические - CnH2n-2, трициклические - CnH2n-4, тетрациклические - CnH2n-6.

По суммарному содержанию циклоалканы во многих нефтях преобладают над другими классами УВ: их содержание колеблется от 25 до 75 % (масс.). Они присутствуют во всех нефтяных фракциях. Обычно их содержание растет по мере утяжеления фракций. Общее содержание нафтеновых углеводородов в нефти растёт по мере увеличения ее молекулярной массы. Исключение составляют лишь масляные фракции, в которых содержание циклоалканов падает за счет увеличения количества ароматических углеводородов.

Из моноциклических УВ в нефти присутствуют в основном пяти- и шестичленные ряды нафтеновых УВ. Распределение моноциклических нафтенов по нефтяным фракциям, их свойства изучены гораздо более полно по сравнению с полициклическими нафтенами, присутствующими в средне- и высококипящих фракциях. В низкокипящих бензиновых фракциях нефтей содержатся преимущественно алкилпроизводные циклопентана и циклогексана [от 10 до 86 % (маесс)], а в высококипящих фракциях - полициклоалканы и моноциклоалканы с алкильными заместителями изопреноидного строения (т.н. гибридные УВ).

Из полициклических нафтенов в нефтях идентифицировано только 25 индивидуальных бициклических, пять трициклических и четыре тетра- и пентациклических нафтена. Если в молекуле несколько нафтеновых колец, то последние, как правило, сконденсированы в единый полициклический блок.

Бицикланы С7-С9 чаще всего присутствуют в нефтях ярко выраженного нафтенового типа, в которых их содержание достаточно высоко. Среди этих углеводородов обнаружены (в порядке убывания содержания): бициклеоктан (пенталан), бициклооктан, бициклооктан, бициклононан (гидриндан), бициклогептан (норборнан) и их ближайшие гомологи. Из трицикланов в нефтях доминируют алкилпергидрофенантрены, среди которых идентифицированы соединения типа (1-4): R = С1, С2; R =С1-С3; R = С2--С4.

нефть кристаллизация залежь углеводород


Тетрацикланы нефти представлены главным образом производными циклопентанопергидрофенантрена - стеранами С27-С30 (5-7):


К пентацикланам нефтей относятся углеводороды ряда гопана (8), лупана (9), фриделана (10) и др.


Достоверных сведений об идентификации полициклоалканов с большим количеством циклов нет, хотя на основе структурно-группового и масс-спектрального анализа можно высказать предположения о присутствии нафтенов с числом циклов, большим пяти. По некоторым данным, высококипящие нафтены содержат в молекулах до 7-8 циклов.

Различия в химическом поведении циклоалканов часто обусловлены наличием избыточной энергии напряжения. В зависимости от размеров цикла циклоалканы подразделяют на малые (С3, С4 - хотя циклопропан и циклобутан в нефтях не обнаружены), нормальные (С5-С7), средние (C8-С11) и макроциклы (от C12 и более). В основе этой классификации лежит зависимость между размером цикла и возникающими в нем напряжениями, влияющими на стабильность. Для циклоалканов и, прежде всего, для их различных производных, характерны перегруппировки с изменением размеров цикла. Так, при нагревании циклогептана с хлоридом алюминия образуется метилциклогексан, а циклогексан при 30-80°С превращается в метилциклопентан. Пяти- и шестичленные углеродные циклы образуются гораздо легче, чем меньшие и большие циклы. Поэтому в нефтях встречается гораздо больше производных циклогексана и циклопентана, чем производных других циклоалканов.

На основе исследования вязкостно-температурных свойств алкилзамещенных моноциклогексанов в широком интервале температур выяснено, что заместитель по мере его удлинения уменьшает среднюю степень ассоциации молекул. Циклоалканы, в отличие от н-алканов с таким же числом углеродных атомов, находятся в ассоциированном состоянии при более высокой температуре.

Арены или ароматические углеводороды - соединения, в молекулах которых присутствуют циклические углеводороды с р-сопряжёнными системами. Содержание их в нефти изменяется от 10-15 до 50 %(масс.). К ним относятся представители моноциклических: бензол и его гомологи (толуол, о-, м-, п-ксилол и др.), бициклические: нафталин и его гомологи, трициклические: фенантрен, антрацен и их гомологи, тетрациклические: пирен и его гомологи и другие.

На основе обобщения данных по 400 нефтям показано, что наибольшие концентрации аренов (37 %) характерны для нефтей нафтенового основания (типа), а наименьшие (20 %) - для нефтей парафинового типа. Среди нефтяных аренов преобладают соединения, содержащие не более трех бензольных циклов в молекуле. Концентрации аренов в дистиллятах, кипящих до 500°С, как правило, снижаются на один-два порядка в следующем ряду соединений: бензолы >> нафталины >> фенантрены >> хризены >> пирены >> антрацены.

Ниже представлено среднее содержание аренов, характерное для нефтей России различных типов, от общего содержания аренов, в %:

бензольные 67 пиреновые 2

нафталиновые 18 антраценовые 1

фенантреновые 8 прочие арены 1

хризеновые и бензфлуореновые 3

Общей закономерностью является рост содержания аренов с повышением температуры кипения. При этом арены высших фракций нефти характеризуются не большим числом ароматических колец, а наличием алкильных цепей и насыщенных циклов в молекулах. В бензиновых фракциях обнаружены все теоретически возможные гомологи аренов C6-C9. Углеводороды с малым числом бензольных колец доминируют среди аренов даже в самых тяжелых нефтяных фракциях. Так, по экспериментальным данным моно-, би-, три-, тетра- и пентаарены составляют соответственно 45-58, 24-29, 15-31, 1,5 и до 0,1 % от массы ароматических углеводородов в дистиллятах 370-535°С различных нефтей.

Моноарены нефтей представлены алкилбензолами. Важнейшими представителями высококипящих нефтяных алкилбензолов являются УВ, содержащие в бензольном ядре до трех метильных и один длинный заместитель линейного, б-метилалкильного или изопреноидного строения. Крупные алкильные заместители в молекулах алкилбензолов могут содержать более 30 углеродных атомов.

Главное место среди нефтяных аренов бициклического строения (диарены) принадлежит прозводным нафталина, которые могут составлять до 95 % от суммы диаренов и содержать до 8 насыщенных колец в молекуле, а второстепенное - производным дифенила и дифенилалканов. В нефтях идентифицированы все индивидуальные алкилнафталины С11, С12 и многие изомеры С13-C15. Содержание дифенилов в нефтях на порядок ниже содержания нафталинов.

Из нафтенодиаренов в нефтях обнаружены аценафтен, флуорен и ряд его гомологов, содержащих метальные заместители в положениях 1-4.

Триарены представлены в нефтях производными фенантрена и антрацена (с резким преобладанием первых), которые могут содержать в молекулах до 4-5 насыщенных циклов.

Нефтяные тетраарены включают углеводороды рядов хризена, пирена, 2,3- и 3,4-бензофенантрена и трифенилена.

Арены нефти, выкипающие выше 500°С и представленные углеводородами C20-C75, распределяются по фракциям в соответствии с данными (табл. 2.3) до 39 атомов углерода в боковых алкильных цепях. Бициклические углеводороды с двумя бензольными и до трех нафтеновых колец выходят в этой же фракции при наличии 22-40 атомов углерода в боковых алкильных цепях. Элюирование трицикли-ческих углеводородов с тремя бензольными и двумя нафтеновыми кольцами во фракции легких аренов возможно при наличии 31-48 атомов углерода в боковых алкильных цепях. В состав средних и тяжелых ароматических фракций входят арены с более короткими боковыми цепями. Моноциклические и бициклические арены, имеющие в боковых цепях 10-20 атомов углерода, и трициклические с 16-30 атомами углерода в боковых цепях выходят в составе средней фракции аренов. Арены с еще более короткими боковыми цепями элюируются в составе тяжелой фракции аренов.

Повышенная склонность аренов, особенно полициклических, к молекулярным взаимодействиям обусловлена низкой энергией возбуждения в процессе гомолитической диссоциации. Для соединений типа антрацена, пирена, хризена и т. п. характерна низкая степень обменной корреляции р-орбиталей и повышенная потенциальная энергия ММВ из-за возникновения обменной корреляции электронов между молекулами. С некоторыми полярными соединениями арены образуют достаточно устойчивые молекулярные комплексы.

Взаимодействие р-электронов в бензольном ядре приводит к сопряжению углерод-углеродных связей. Следствием эффекта сопряжения являются следующие свойства аренов:

Плоское строение цикла с длиной С-С-связи (0,139 нм), занимающей промежуточное значение между простой и двойной С-С-связью;

Эквивалентность всех С-С-связей в незамещенных бензолах;

Склонность к реакциям электрофильного замещения протона на различные группы по сравнению с участием в реакциях присоединения по кратным связям.

Гибридные углеводороды (церезины) - углеводороды смешанного строения: парафино-нафтенового, парафино-ароматического, нафтено-ароматическо-го. В основном, это твёрдые алканы с примесью длинноцепочечных УВ, содержащих циклановое или ароматическое ядро. Они являются основной составной частью парафиновых отложений в процессах добычи и подготовки нефтей.

Таблица 2.3.

Распределение аренов, выкипающих выше 500°С, по фракциям гудрона

Сырья для производства природными объектами .

Гипотезы происхождения нефти

1) неорганическая

2) космическая

3) органическая

Автором одной из неорганических теорий является Д.И.Менделеев. Согласно этой теории первые органические соединения образовались в результате взаимодействия карбидов металлов, находящихся в ядре земли, с водой, проникшей к ним по трещинам:

СаС 2 + 2Н 2 О → Са(ОН) 2 + С 2 Н 2

Al 4 C 3 + 12Н 2 O → 4А1(ОН) 3 + 3СН 4

Под действием высоких температур углеводороды и вода испарялись, поднимались к наружным частям земли и конденсировались в хорошо проницаемых осадочных породах.

Согласно космической теории , нефть образовалась из углерода и водорода при формировании Земли. По мере понижения температуры планеты углеводороды поглощались ею и конденсировались в земной коре.

органическая теория - нефть является продуктом разложения растительных и животных остатков, отлагающихся первоначально в виде морского ила. Основным органическим материалом для нефти служат растительные и животные микроорганизмы, развивающиеся в гидросфере. Отмершие остатки таких организмов скапливаются на дне заливов. Одновременно в море сносятся различные минеральные вещества. В конечном итоге органический материал собирается на дне водоема и постепенно погружается все глубже и глубже. Верхний слой такого ила называется пелоген , а частично превращенный ил в большей своей толще - сапропел . По современным представлениям, органическое вещество, захороненное в морском иле, и является материнским веществом нефти. К так называемым сапропелитовым каустобиолитам относятся также сланцы, сапропелитовые угли и т.д.



Торф, бурый уголь, каменный уголь, антрацит - гумусовые каустобиолиты (гумус-остатки наземной растительности).

Разложение погибших растительных и животных организмов в морских илах под воздействием О 2 и бактерий приводит к образованию: 1) жидких и газообразных продуктов; 2) осадков, устойчивых к химическому и бактерицидному воздействию. Эти осадки постепенно накапливаются в осадочных слоях. По своей химической природе они представляют собой смесь продуктов превращения белков. Дальнейшие превращения этого исходного органического материала в нефть происходит уже в отсутствии О 2 .

Состав нефтей, физико-химические характеристики и классификация нефтей

Элементный состав нефти

Основными элементами, входящими в состав нефти, являются С и Н.

Нефть состоит в основном из смеси метановых (алкановых), нафтеновых (циклоалкановых) и ароматических углеводородов. Кроме этого в нефтях присутствуют кислородные, сернистые и азотистые соединения.

К кислородным соединениям - нафтеновые кислоты, фенолы, асфальто-смолистые вещества. Сернистые соединения – это H 2 S, меркаптаны, сульфиды, тиофены, тиофаны, азотистые соединения – гомологи пиридина, гидропиридина и гидрохинолина. Компонентами нефти являются также растворенные в ней газы, вода и минеральные соли.

Состав минеральных компонентов определяется в золе, получаемой при сжигании нефти. В золе обнаружено до 20 различных элементов (Са, Fe, Si, Zn, Сu, Al, Mo, Ni, V, Na, Sn, Ti, Mn, Sr, Pb, Co, Ag, Ba, Cr и др В тяжелой части нефти содержатся смолисто-асфальтеновые вещества. Это сложная смесь наиболее высокомолекулярных соединений, представляющих собой гетероорганические соединения со сложной гибридной структурой, включающей серу, кислород, азот и некоторые металлы. Наиболее богаты смолисто-асфальтеновыми веществами молодые нефти с высоким содержанием ароматических соединений.



Классификация нефтей

1. Химическая классификация (преимущественное содержание одно или нескольких классов углеводородов)

Парафиновые

Нафтеновые

Ароматические.

классификация нефтей довольно условна, поскольку углеводородный состав даже нефти одного месторождения меняется при переходе от одного горизонта залегания к другому.

2.Технологическая классификация учитывает плотность нефтей, массовое содержание светлых фракций, массовое содержание серы, смолисто-асфальтеновых соединений, твердых парафинов.

По плотности различают нефти: легкие с плотностью до 0,84 г/см 3 , средние - 0,84-0,88 г/см 3 и тяжелые - 0,88-0,92 г/см 3 и выше.

асфальтено-смолистых веществ.

Рациональная переработка нефти и нефтепродуктов играет важную роль в современной экономике.

Бензин. Требования к нему и методы повышения качества.

Бензи́н - горючая смесь лёгких углеводородов с температурой кипения от 30 до 200 °C. Плотность около 0,75 г/см³. Теплотворная способность примерно 10500 ккал/кг (46 МДж/кг, 34,5 МДж/литр). Температура замерзания ниже -60 °C.

Бензин получают путем разгонки и отбора фракций нефти, выкипающих в определенных температурных пределах; до 100 °C - бензин I сорта, до 110 °C - бензин специальный, до 130 °C - бензин II сорта, до 265 °C - керосин («метеор»), до 270 °C - керосин обыкновенный, примерно до 300 °C - производится отбор масляных фракций. Остаток считается мазутом.

Повысить качество автомобильных бензинов можно за счет следующих мероприятий:

Отказа от применения в составе бензинов соединений свинца;

Нормирования концентрации фактических смол в бензинах на месте применения на уровне не более 5 мг на 100 см³;

Деления бензинов по фракционному составу и давлению насыщенных паров на 8 классов с учетом сезона эксплуатации автомобилей и температуры окружающей среды, характерной для конкретной климатической зоны.

Наличие классов позволяет выпускать бензин со свойствами, оптимальными для реальных температур окружающего воздуха, что обеспечивает работу двигателей без образования паровых пробок при температурах воздуха до +60 °С, а также гарантирует высокую испаряемость бензинов и легкий пуск двигателя при температурах ниже -35 °С;

Введения моющих присадок, не допускающих загрязнения и осмоления деталей топливной аппаратуры.

Требования, предъявляемые к качеству топлива

1.Высокие энергетические и термодинамические характеристики продуктов сгорания. При горении бензина должно выделяться максимальное количество тепла, продукты сгорания должны иметь малую молекулярную массу, небольшие теплоёмкость и теплопроводность, высокое значение произведения удельной газовой постоянной на температуру горения (RT).

2.Хорошая прокачиваемость. Бензины должны надёжно прокачиваться по топливной системе машин, трубопроводам, насосам, системам регулирования и другим агрегатам и коммуникациям при любых условиях окружающей среды – низкой и высокой температурах, различных давлениях, запылённости и влажности.

3.Оптимальная испаряемость. В условиях хранения и транспортирования испарение должно быть минимальным. При применении в двигателе бензина должны иметь такую испаряемость, чтобы обеспечить надёжное воспламенение и горение топлива с оптимальной скоростью в камерах сгорания двигателей.

4.Минимальная коррозионная активность. Топлива не должны содержать компоненты, которые разрушают конструкционные материалы двигателя, средства хранения и транспортирования.

5. Высокая стабильность в условиях хранения и применения. Топлива в течение длительного времени не должны изменять физико-химические и эксплуатационные свойства.

6.Нетоксичность. Продукты сгорания также должны быть нетоксичными.

Основными показателями бензина являются детонационная стойкость, давление насыщенных паров, фракционный состав, химическая стабильность и др.

октановое число – условный показатель, характеризующий стойкость бензинов к детонации и численно соответствующий детонационной стойкости модельной смеси изооктана и н-гептана.

Дизельное топливо и керосин. Требования к ним и способы повышения качества.

Дизельное топливо является сложной смесью парафиновых (10-40%), нафтеновых(20-60%) и ароматических (14-30%) углеводородов и их производных средней молекулярной массы 110-230, выкипающих в пределах 170-380 градусов по Цельсию. Температура вспышки составляет 35-80 градусов по Цельсию, застывания – ниже 5 градусов.

Для того чтобы обеспечить надежную, экономичную и долговечную работу дизельного двигателя, топливо для него должно отвечать следующим требованиям:

· хороший распыл топлива и оптимальное смесеобразование;

· полное сгорание топлива с малой задержкой самовоспламенения и минимальным образованием сажистых и токсичных веществ (оксида азота NOx, оксидов серы SO2, SОз, сероводорода H2S, бенз-а-пирена С20Н12) и др.;

· хорошая прокачиваемость топлива для обеспечения надежной и бесперебойной работы топливной аппаратуры;

· низкое нагарообразование в камере сгорания;

· отсутствие коррозии топливопроводов и деталей топливной аппаратуры;

· достаточная стабильность свойств при длительном хранении.

Химические свойства.

1.Реакции присоединения с раскрытием кольца и образованием ациклических (линейных) продуктов:

2. Дегидрирование (реакция Зелинского):

3.Реакция свободнорадикального замещения в цикле :

4. Окисление (образуются двухосновные карбоновые кислоты)

Ароматические углеводороды – это непредельные углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей. Общая формула C n H 2 n -6 Молекулы находятся в sp 2 – гибридизации. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).

Физические свойства

Агрегатное состояние - жидкость с различными температурами кипения. Конденсированные полициклические арены - твердые вещества с различными температурами плавления.

Химические свойства

Из-за повышенной устойчивости ароматической системы, несмотря на ненасыщенность, склонна к реакциям замещения, а не присоединения.

1. Реакции электрофильного замещения в кольце .

Нитрование

Сульфирование бензола с получением сульфокислоты:

галогенирование

2. Присоединения.

3. Окисление.

Алкены - ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n. Атомы углерода при двойной связи находятся в состоянии sp² гибридизации.

Физические свойства.

Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.

При нормальных условиях алкены с C2H4 до C4H8 - газы; с C5H10 до C17H34 - жидкости, после C18H36 - твёрдые тела. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Химические свойства

1 Гидрирование.

2. Галогенирование.

3. Гидратация.

4. Алкилтрование.

Гидрогалогенирование, гидратация и сульфирование протекают по правилу Марковникова , по которому в реакциях присоединения полярных молекул (галогенводородов, воды, серной кислоты и др.) к несимметричным алкенам атом водорода присоединяется к наиболее гидрогенизированному атому углерода двойной связи:

Ароматические соединения

Ароматические соединения - циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.

Получение

1.Каталитическая дегидроциклизация алканов, то есть отщепление водорода с одновременной циклизацией. Реакция осуществляется при повышенной температуре с использованием катализатора, например оксида хрома.

2.Каталитическое дегидрирование циклогексана и его производных. В качестве катализатора используется палладиевая чернь или платина при 300 °C. (Н. Д. Зелинский)

3.Циклическая тримеризация ацетилена и его гомологов над активированным углем при 600 °C. (Н. Д. Зелинский)

4.Алкилирование бензола галогенопроизводными или олефинами. (Реакция Фриделя - Крафтса)

Осн. источником получения ароматических углеводородов служат продукты коксования кам. угля. Большое значение имеет производство ароматических углеводородов из нефтяных углеводородов жирного ряда.

Ароматизация нефтепродуктов, химическая переработка нефтяных продуктов с целью увеличения содержания в них ароматических углеводородов путём превращения углеводородов с открытой цепью в углеводороды циклического строения. Ароматизация нефтепродуктов происходит в различных процессах переработки нефти и её фракций - крекинге, каталитаx. риформинге, гидрогенизации деструктивной, пиролизе. Для промышленного получения ароматических углеводородов применяют главным образом каталитический риформинг бензино-лигроиновых фракций нефти. Получаемый продукт, содержащий до 60% ароматических углеводородов, используют как высокооктановый компонент моторного топлива или для получения чистых ароматических углеводородов.

Этим путём получают 80-90% лёгких ароматических углеводородов, используемых для производства взрывчатых веществ, красителей, моющих средств, пластических масс и др.

Для некоторых ароматических углеводородов имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу:

Полипропилен. Получение

Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов.

nCH2=CH(CH3) → [-CH2-CH(CH3)-]n

Параметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.

Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4-0,5 г/см³. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.

По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический.

В отличие от полиэтилена, полипропилен менее плотный, более твёрдый (стоек к истиранию), более термостойкий, почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду.

Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.

Полиэтилен - термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы …-CH2-CH2-CH2-CH2-…,

Представляет собой воскообразную массу белого цвета. Химически- и морозостоек, изолятор, не чувствителен к удару, при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия (прилипание) - чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном - похожим материалом растительного происхождения.

Общие свойства

Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора.

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. Со временем, деструктурирует с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Полиэтилен низкого давления (HDPE) применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.

Поливинилхлорид - бесцветная, прозрачная пластмасса, термопластичный полимер винилхлорида. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. Не горит на воздухе, но обладает малой морозостойкостью.

Растворяется в циклогексаноне, тетрагидрофуране, диметилформамиде (ДМФА), дихлорэтане, ограниченно - в бензоле, ацетоне. Не растворяется в воде, спиртах, углеводородах; стоек в растворах щелочей, кислот, солей.

Устойчив к действию влаги, кислот, щелочей, растворов солей, бензина, керосина, жиров, спиртов, обладает хорошими диэлектрическими свойствами.

Получается суспензионной или эмульсионной полимеризацией винилхлорида, а также полимеризацией в массе.

Применяется для электроизоляции проводов и кабелей, производства листов, труб, пленок, пленок для натяжных потолков, искусственных кож, поливинилхлоридного волокна, пенополивинилхлорида, линолеума, обувных пластикатов, мебельной кромки и т. д. Также применяется для производства грампластинок, профилей для изготовления окон и дверей.

Поливинилхлорид также часто используется в одежде и аксессуарах для создания подобного коже материала, отличающегося гладкостью и блеском. Поливинилхлорид используют как уплотнитель в бытовых холодильниках, вместо относительно сложных механических затворов. Это дало возможность применить магнитные затворы в виде намагниченных эластичных вставок, помещаемых в баллоне уплотнителя.

Синтетические каучуки - синтетические полимеры, способные перерабатываться в резину путем вулканизации, составляют основную массу эластомеров. Синтетический каучук - высокополимерный, каучукоподобный материал. Его получают полимеризацией или сополимеризацией бутадиена, стирола, изопрена, неопрена, хлорпрена, изобутилена, нитрила акриловой кислоты. Подобно натуральным каучукам, синтетические имеют длинные макромолекулярные цепи, иногда разветвленные, со средним молекулярным весом, равным сотням тысяч и даже миллионам. Полимерные цепи в синтетическом каучуке в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, получаемая при этом резина, приобретает характерные физико-механические свойства.

Часть синтетических каучуков выпускают в виде водных дисперсий - синтетических латексов. Особую группу каучуков составляют - термоэластопласты.

Некоторые виды синтетических каучуков представляют собой полностью предельные соединения, поэтому для их вулканизации применяют органические перекиси, амины и др. вещества. Отдельные виды синтетических каучуков по ряду технических свойств превосходят натуральный каучук. По области применения синтетические каучуки разделяют на каучуки общего и специального назначения. К каучукам общего назначения относят каучуки с комплексом достаточно высоких технических свойств, пригодных для массового изготовления широкого круга изделий. К каучукам специального назначения относят каучуки с одним или несколькими свойствами, обеспечивающими выполнение специальных требований к изделию и иго работоспособности в часто экстремальных условиях эксплуатации.

Каучуки общего назначения: изопреновые, бутадиеновые, бутадиенстирольные и др.

Каучуки специального назначения: бутилкаучук, этиленпропиленовые, хлорпреновые, фторкаучуки, уретановые и др.

В технике из каучуков изготовляют шины для автотранспорта, самолётов, велосипедов; каучуки применяют для электроизоляции, а также производства промышленных товаров и медицинских приборов.

Предмет химии нефти и газа. Нефть и газ как природные объекты, источники энергии и сырье для переработки. Происхождение нефти.

Природные источники углеводородов являются основой промышленности органического синтеза, задачей которой является получение необходимых человеку веществ, в том числе и не встречающихся в природе.

Основными источниками сырья для промышленности органического синтеза являются природный газ, попутные нефтяные газы, нефть.

Нефть – сложная смесь углеводородов, в которой преобладают предельные углеводороды, в молекулах которых от 5-50 атомов C, а также циклоалканы и арены, и органических соединений серы, азота и кислорода.

Сырья для производства нефтехимической, строительной и других отраслей промышленности. В этом отношении нефть и газ являются на сегодняшний день незаменимыми природными объектами .

ВВЕДЕНИЕ Нефть - это жидкий горючий минерал, распространенный в осадочной оболочке Земли. По составу нефть представляет собой сложную смесь углеводородов (алканов, циклоалканов, аренов, …) и соединений, содержащих помимо углерода и водорода гетероатомы - кислород, серу и азот. По внешнему виду нефть - маслянистая жидкость, флуоресцирующая на свету. Цвет нефти зависит от содержания и строения содержащихся в ней смолистых веществ; известны темные (бурые, почти черные), светлые и даже бесцветные нефти.

ВВЕДЕНИЕ Нефть легче воды и почти нерастворима в ней. Вязкость нефти определяется ее составом, но во всех случаях она значительно выше, чем у воды. Нефть представляет собой горючий материал, ее теплота сгорания выше, чем у твердых горючих полезных ископаемых (угля, сланца, торфа), и составляет около 42 МДж/кг. В отличие от твердых горючих ископаемых нефть содержит мало золы. Свое название нефть получила от персидского слова нафата, означающего просачивающаяся, вытекающая.

ВВЕДЕНИЕ Происхождение нефти является одной из наиболее сложных проблем современной науки. Существуют теории: органического происхождения нефти, абиогенного (за счет различных химических превращений неорганических веществ). В последние годы были выдвинуты также гипотезы космического, магнетического, вулканического происхождения нефти, которые не получили широкой поддержки.

n Значение нефти для энергетики, транспорта, различных отраслей промышленности чрезвычайно велико. n Из нефти вырабатываются всевозможные виды жидкого топлива (бензин, керосин, дизельное, газотурбинное, котельное топлива), смазочные и специальные масла, пластичные смазки, парафин, технический углерод (сажа), битумы, нефтяные коксы и другие товарные продукты.

n Получаемые при переработке нефти легкие алканы и алкены, жидкий и твердый парафины, индивидуальные ароматические углеводороды представляют собой ценное сырье для дальнейшей химической переработки (нефтехимического синтеза). n С помощью нефтехимического синтеза получают всевозможные пластические массы, синтетические смолы и каучуки, синтетические моющие средства, индивидуальные органические кислоты, спирты, альдегиды и кетоны. n Применение нефтяного сырья высвобождает большое количество пищевых продуктов (зерна, картофеля, жиров), которые ранее расходовались на технические цели.

1. Фракционный состав нефти Для всех индивидуальных веществ температура кипения при данном давлении является физической константой. Так как нефть представляет собой смесь большого числа органических веществ, обладающих различным давлением насыщенных паров, то говорить о температуре кипения нефти нельзя. Нефть и ее продукты характеризуются не температурами кипения, а температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки и судят о фракционном составе.

1. Фракционный состав нефти При исследовании новых нефтей фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками. Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования кривую истинных температур кипения (ИТК) в координатах температура - содержание фракций.

Отбор фракций до 200°С проводится при атмосферном давлении, а остальных во избежание термического разложения - под различным вакуумом. По принятой методике от начала кипения до 300°С отбирают 10 -градусные, а затем 50 -градусные фракции до фракций с концом кипения 475 -550°С.

Разгонку нефтепродуктов, перегоняющихся до 300°С, проводят в строго стандартных условиях на аппаратах без ректификации по ГОСТ 2177 -82. По этой методике отмечают температуру начала кипения, температуры, при которых отгоняются 10, 50, 95 и 97, 5% (об.), а также остаток и потери.

2. Элементный состав нефти Главные элементы, из которых состоят все компоненты нефти, углерод и водород. Содержание: углерода 83, 5 - 87% водорода 11, 5 - 14%. Во всех нефтях присутствуют сера, кислород и азот. Азота 0, 001 - 0, 3%, кислорода 0, 1 - 1, 0%, в некоторых высокосмолистых нефтях оно может быть и выше.

2. Элементный состав нефти Значительно различаются нефти по содержанию серы: от 0, 1 - 6, 5%. Уникальной является нефть месторождения Этцель (Германия), в которой 9, 6% серы. Фактически эта нефть почти целиком состоит из серосодержащих соединений.

2. Элементный состав нефти В очень малых количествах в нефтях присутствуют и другие элементы, главным образом металлы - ванадий, никель, железо, магний, хром, титан, кобальт, калий, кальций, натрий и др. Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента. В различных нефтепродуктах был найден германий в количестве 0, 15 - 0, 19 г/т.

Таблица 1 Содержание отдельных элементов, смол и асфальтенов в некоторых нефтях Нефть Состав % С Н S O N смо- асфальлы тены Арланская 84, 12 12, 15 3, 04 0, 06 0, 33 16, 60 5, 80 Ромашкинская 85, 13 13, 00 1, 61 0, 09 0, 17 10, 24 4, 00 Суруханская (масляная) 86, 70 12, 50 0, 26 0, 14 9, 00 0 Устьбалыкская 85, 37 12, 69 1, 53 0, 22 0, 19 11, 10 2, 30 Самотлорская 86, 23 12, 70 0, 63 0, 25 0, 10 10, 00 1, 36

3. Классификация нефтей и нефтепродуктов n n На начальном этапе развития нефтяной промышленности основным показателем качества нефти была плотность. Нефти делили на легкие (0, 884). В легких нефтях содержится больше бензиновых и керосиновых фракций и сравнительно мало серы и смол. Тяжелые нефти характеризуются высоким содержанием смолисто-асфальтеновых веществ, гетероатомных соединений и потому мало пригодны для производства масел и дают относительно малый выход топливных фракций.

3. Классификация нефтей и нефтепродуктов n Предложено множество научных классификаций нефтей (химическая, генетическая, технологическая и др.), но до сих пор нет единой международной их классификации.

n n 3. 1. Химическая классификация Горным бюро США предложен вариант химической классификации, в основу которого положена связь между плотностью и углеводородным составом легкой и тяжелой частей нефти. Классификация, отражающая только химический состав нефти, предложена сотрудниками Грозненского нефтяного научно-исследовательского института (Гроз. НИИ). За основу этой классификации принято преимущественное содержание в нефти одного или нескольких классов углеводородов. Различают шесть типов нефтей: парафиновые, парафино -нафтеновые, парафино-нафтеноароматические, нафтено-ароматические и ароматические.

n n n В парафиновых нефтях все фракции содержат значительное количество алканов: бензиновые - не менее 50%, а масляные - 20% и более. Количество асфальтенов и смол исключительно мало. В парафино-нафтеновых нефтях и их фракциях преобладают алканы и циклоалканы, содержание аренов и смолисто-асфальтеновых веществ мало.

n n n Для нафтеновых нефтей характерно высокое (до 60% и более) содержание циклоалканов во всех фракциях. Они содержат минимальное количество твердых парафинов, смол и асфальтенов. В парафино-нафтено-ароматических нефтях содержатся примерно в равных количествах углеводороды всех трех классов, твердых парафинов не более 1, 5%. Количество смол и асфальтенов достигает 10 %.

n n Нафтено-ароматические нефти характеризуются преобладающим содержанием цикланов и аренов, особенно в тяжелых фракциях. Алканы содержатся в небольшом количестве только в легких фракциях. В состав этих нефтей входит около 15 - 20% смол и асфальтенов. Ароматические нефти характеризуются преобладанием аренов во всех фракциях и высокой плотностью.

3. 2. Технологическая классификация В нашей стране с 1991 г. действовала технологическая классификация нефтей (таблица 2.) Нефти подразделяли по следующим показателям на: 1) три класса (I-III) по содержанию серы в нефти (малосернистые, сернистые и высокосернистые), а также в бензине (н. к. - 180°С), в реактивном (120 - 240°С) и дизельном топливе (240 - 350°С); 2) три типа по потенциальному содержанию фракций, перегоняющихся до 350°С (T 1 - Т 3);

3. 2. Технологическая классификация 3) четыре группы по потенциальному содержанию базовых масел (М 1 - М 4); 4) четыре подгруппы по качеству базовых масел, оцениваемому индексом вязкости (И 1 - И 4); 5) три вида по содержанию парафинов (П 1 - П 3). Характеристика нефти по данной классификации может быть представлена как в цифровом, так и в буквенноцифровом отображении.

Таблица 2 Технологическая классификация нефтей (по ГОСТ 38. 01197 -80) Класс Содержание серы, % В нефти В бензине (н. к. 1800 С) В реакти вном топли ве 1202400 С Тип В дизельн ом топливе 240 -3500 С Выход фракц ий до 3500 С, % 1 Не более 0, 50 Не более 0, 10 Не более 0, 20 1 Не менее 55, 0 2 0, 51 -2, 0 Не более 0, 10 Не более 0, 25 Не более 1, 00 2 45, 0 -54, 9 Более 0, 25 Более 1, 00 3 Менее 45, 0 3 Более 2, 0 Более 0, 10

Продолжение табл. 2 Гр Потенциальное Поду содержание базовых групп п масел, % а п На нефть На мазут а (выше Индекс Вид вязкости базовых масел Содержание парафин ав нефти, % 3500 С) 1 Не менее 25, 0 Не менее 45, 0 1 Более 95 1 Не более 1, 50 2 15 -24, 9 Не менее 45, 0 2 От 90 до 95 3 15 -24, 9 30 -44, 9 3 От 85 до 89, 9 2 1, 51 -6, 00 4 Менее 15, 0 Менее 30, 0 4 Менее 85 3 Более 6, 00

- В настоящее время в России принята новая классификация нефтей по ГОСТ Р 51858 -2002 Для оценки товарных качеств подготовленных на промыслах нефтей в 2002 г. был разработан применительно к международным стандартам и принят новый ГОСТ России Р 518580 -2002, в соответствии с которым (табл. 4) их подразделяют (классифицируют): по содержанию общей серы на четыре класса; по плотности при 200 С на пять типов; по содержанию воды и хлористых солей на три группы; по содержанию сероводорода и легких меркаптанов на три вида.

Кроме того, тип нефти, поставляемой на экспорт, определяется помимо плотности при 150 С дополнительно по следующим показателям: Условное обозначение марки нефти состоит из четырех цифр, соответствующих обозначениям класса, типа, группы и вида нефти. Например, нефть марки 2, 2 э, 1, 2 означает, что она сернистая, поставляется на экспорт, средней плотности, по качеству промысловой подготовки соответствует 1 -й группе и по содержанию сероводорода и легких меркаптанов – 2 -му виду.

0 э Выход фракции в %, не менее до температуры: 2000 С 3000 С 4000 С массовая доля парафина, %, не более 1 э 2 э 3 э - 4 э - 30 52 62 27 47 57 21 42 53 - - 6, 0 - -

Таблица 4 Классификация и требования к качеству подготовленных на промыслах нефтей по ГОСТ Р 51858 -2002 Показатель Массовая доля серы, %: до 0, 6 – малосернистая 0, 6 -1, 80 – сернистая 1, 80 -3, 50 – высокосернистая более 3, 50 – особо высокосернистая класс 1 2 3 4 тип группа вид

Таблица 4 Классификация и требования к качеству подготовленных на промыслах нефтей по ГОСТ Р 51858 -2002 Показатель класс Плотность при 200 С, кг/м 3: До 830 – особо легкая 830, 1 -850, 0 – легкая 850, 1 -870, 0 – средняя 870, 1 -895, 0 – тяжелая более 895, 0 - битуминозная тип 0(0 э) 1(1 э) 2(2 э) 3(3 э) 4(4 э) группа вид

Таблица 4 Классификация и требования к качеству подготовленных на промыслах нефтей по ГОСТ Р 51858 -2002 Показатель класс тип группа Массовая доля воды, %, не более 0, 5 1, 0 концентрация хлористых солей, мг/дм 3, не более 100 300 900 содержание механических примесей, % масс. , не более 0, 05 давление насыщенных паров: к. Па 66, 7 мм рт. ст. 500 500 вид

Таблица 4 Классификация и требования к качеству подготовленных на промыслах нефтей по ГОСТ Р 51858 -2002 Показатель класс тип Массовая доля, млн-1 (ррm), не более: сероводорода метил- и этилмеркаптанов группа вид 20 50 100 40 60 100

II. ХИМИЧЕСКИЙ СОСТАВ И РАСПРЕДЕЛЕНИЕ ГРУППОВЫХ УГЛЕВОДОРОДНЫХ КОМПОНЕНТОВ ПО ФРАКЦИЯМ НЕФТИ Наиболее важный показатель качества нефти, определяющий выбор метода переработки, ассортимент и эксплуатационные свойства получаемых нефтепродуктов, - химический состав и его распределение по фракциям. В исходных (нативных) нефтях содержатся в различных соотношениях все классы углеводородов, кроме непредельных (алкенов) соединений: парафиновые (алканы), нафтеновые (циклоалканы), ароматические (арены) и гибридные - парафинонафтено-ароматические.

1. Ациклические углеводороды 1. 1. Алканы Парафиновые углеводороды - алканы (Сn. Н 2 n+2) составляют значительную часть групповых компонентов нефтей и природных газов всех месторождений. Общее содержание их в нефтях составляет 25 -35% масс. (не считая растворенных газов) и только в некоторых парафинистых нефтях достигает 40 -50% масс. Наиболее широко представлены в нефтях алканы нормального строения и изоалканы преимущественно монометилзамещенные с различным положением метильной группы в цепи.

1. Ациклические углеводороды 1. 1. Алканы С повышением молекулярной массы фракций нефти содержание в них алканов уменьшается. Попутные нефтяные и природные газы практически полностью, а прямогонные бензины чаще всего на 60 -70% состоят из алканов. В масляных фракциях их содержание снижается до 5 -20% масс.

Газообразные алканы Алканы С 1 -С 4 метан, этан, пропан, бутан и изобутан, а также 2, 2 -диметилпропан при нормальных условиях находятся в газообразном состоянии. Все они входят в состав природных, газоконденсатных и нефтяных попутных газов. Природные газы добывают из чисто газовых месторождений. Они состоят в основном из метана (9399% масс.) с небольшой примесью его гомологов, неуглеводородных компонентов: сероводорода, диоксида углерода, азота и редких газов (Не, Аг и др.).

Газы газоконденсатных месторождений и нефтяные попутные газы отличаются от чисто газовых тем, что метану в них сопутствуют в значительных концентрациях его газообразные гомологи С 2 -С 4 и выше. Поэтому они получили название жирных газов. Из них получают легкий газовый бензин, который является добавкой к товарным бензинам, а также сжатые жидкие газы в качестве горючего. Этан, пропан и бутаны после разделения служат сырьем для нефтехимии.

Жидкие алканы Алканы от С 5 до C 15 в обычных условиях представляют собой жидкости, входящие в состав бензиновых (С 5 - С 10) и керосиновых (С 11 - C 15) фракций нефтей. Исследованиями установлено, что жидкие алканы С 5 - С 9 имеют в основном нормальное или слаборазветвленное строение.

Твердые алканы. Алканы С 16 и выше при нормальных условиях твердые вещества, входящие в состав нефтяных парафинов и церезинов. Они присутствуют во всех нефтях, чаще в небольших количествах (до 5% масс.) в растворенном или взвешенном кристаллическом состоянии. В парафинистых и высокопарафинистых нефтях их содержание повышается до 10 - 20% масс. Нефтяные парафины представляют собой смесь преимущественно алканов разной молекулярной массы, характеризуются пластинчатой или ленточной структурой кристаллов.

Твердые алканы. При перегонке мазута в масляные фракции попадают твердые алканы С 18 - С 35 с молекулярной массой 250 - 500. В гудронах концентрируются более высокоплавкие алканы С 36 - С 55 - церезины, отличающиеся от парафинов мелкокристаллической структурой, более высокой молекулярной массой (500 700) и температурой плавления (65 - 88°С вместо 45 54°С у парафинов). Исследованиями установлено, что твердые парафины состоят преимущественно из алканов нормального строения, а церезины - в основном из циклоалканов и аренов с длинными алкильными цепями нормального и изостроения. Церезины входят также в состав природного горючего минерала - озокерита.

1. 2. Непредельные углеводороды (алкены, диалкены) Непредельные углеводороды (олефины) с общей формулой Сn. Н 2 n для алкенов и Сn. Н 2 n-2 для диалкенов в нативных нефтях и природных газах обычно не присутствуют. Они образуются в химических процессах переработки нефти и ее фракций (термический и каталитический крекинг, коксование, пиролиз и др.). В газах этих процессов содержание олефинов С 1 С 4 составляет 20 - 60% маcс. К ним относят этилен, пропилен, бутен-1, бутены -2 (цис- и трансформы), изобутилен, бутадиен. Жидкие алкены (С 5 - С 18) нормального и изостроения входят в состав легких и тяжелых дистиллятов вторичного происхождения.

1. 2. Непредельные углеводороды (алкены, диалкены) Все алкены, особенно диалкены, обладают повышенной реакционной способностью в реакциях окисления, алкилирования, полимеризации и др. Присутствие алкенов С 5 и выше в нефтепродуктах (топливах, маслах) ухудшает их эксплуатационные свойства (из-за окисляемости и осмоления). В то же время они являются ценным сырьем нефтехимического синтеза в производстве пластмасс, каучуков, моющих средств и т. п. Содержание непредельных углеводородов в нефтяных фракциях оценивается так называемым йодным числом (И. Ч.), характеризующим присоединение количества граммов йода на 100 г нефтепродукта при их взаимодействии, по специальной методике.

2. Циклические углеводороды 2. 1. Циклоалканы Нафтеновые углеводороды - циклоалканы (цикланы – ц - Сn. H 2 n) - входят в состав всех фракций нефтей, кроме газов. В среднем в нефтях различных типов они содержатся от 25 до 80% маcс. Бензиновые и керосиновые фракции нефтей представлены в основном гомологами циклопентана и циклогексана, преимущественно с короткими (C 1 – С 3) алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические гомологи нафтенов с двумя - четырьмя одинаковыми или разными циклами сочлененного или конденсированного типов строения.

2. Циклические углеводороды 2. 1. Циклоалканы Распределение нафтеновых углеводородов по фракциям нефти самое разнообразное. Их содержание обычно растет по мере утяжеления фракций и только в наиболее высококипящих масляных фракциях падает. В некоторых нефтях нафтены распределены почти равномерно по фракциям. Распределение циклоалканов по типам структур определяется химическим составом нефтей и температурными пределами фракций. Для большинства нефтей характерно преобладание моно- и бицикланов над остальными нафтенами, особенно в низкокипящих их фракциях. С ростом температуры кипения фракций последовательно повышается доля нафтенов с большим числом циклов, а моноцикланов непрерывно снижается.

Нафтеновые углеводороды являются наиболее высококачественной составной частью моторных топлив и смазочных масел. Моноциклические нафтеновые углеводороды придают автобензинам, реактивным и дизельным топливам высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического риформинга. В составе смазочных масел нафтены обеспечивают малое изменение вязкости от температуры (т. е. высокий индекс масел). При одинаковом числе углеродных атомов нафтены по сравнению с алканами характеризуются большей плотностью и, что особенно важно меньшей температурой застывания.

2. 2. Арены Ароматические углеводороды - арены с эмпирической формулой Сn. Нn+2 -2 Ка (где Ка - число ареновых колец) - содержатся в нефтях, как правило, в меньшем количестве (15 - 50% маcс.), чем алканы и циклоалканы, и представлены гомологами бензола в бензиновых фракциях и производными полициклических аренов с числом Ка до 4 и более в средних топливных и масляных фракциях.

2. 2. Арены В бензиновых фракциях нефтей идентифицированы все теоретически возможные гомологи бензола С 6 - С 9 с преобладанием термодинамически более устойчивых изомеров с числом алкильных заместителей примерно в следующем соотношении: С 6: С 7: C 8: C 9 = 1: 3: 7: 8. Причем из аренов C 8 соотношение этилбензола к сумме ксилолов (диметилбензола) составляет 1: 5, а среди аренов С 9 пропилбензол, метил-этилбензол и триметилбензол содержатся в пропорции 1: 3: 5.

В бензинах в небольших количествах обнаружены арены С 10, а также простейший гибридный углеводород - индан. В керосино-газойлевых фракциях нефтей идентифицированы гомологи бензола С 10 и более, нафталин, тетралин и их производные. В масляных фракциях найдены фенантрен, антрацен, пирен, хризен, бензантрацен, бензфенантрен и многочисленные их производные, а также гибридные углеводороды с различным сочетанием бензольных и нафтеновых колец. .

Ароматические углеводороды являются ценными компонентами в автобензинах (с высокими октановыми числами), но нежелательными в реактивных и дизельных топливах. Моноциклические арены с длинными боковыми изопарафиновыми цепями придают смазочным маслам хорошие вязкотемпературные свойства. В этом отношении весьма нежелательны и подлежат удалению из масел полициклические арены без боковых цепей.

Индивидуальные ароматические углеводороды: бензол, толуол, ксилолы, этилбензол, изопропилбензол и нафталин - ценное сырье для многих процессов нефтехимического и органического синтеза, включая такие важные отрасли нефтехимической промышленности, как производство синтетических каучуков, пластмасс, синтетических волокон, взрывчатых, анилино-красочных и фармацевтических веществ.

4. Гетероатомные соединения нефти Гетероатомные (серо-, азот- и кислородсодержащие) и минеральные соединения, содержащиеся во всех нефтях, являются нежелательными компонентами, зависимость: легкие нефти с высоким содержанием поскольку резко ухудшают качество получаемых нефтепродуктов, осложняют переработку (отравляют катализаторы, усиливают коррозию аппаратуры и т. д.) и обусловливают необходимость применения гидрогенизационных процессов.

4. Гетероатомные соединения нефти Между содержанием гетероатомных соединений и плотностью нефтей наблюдается вполне закономерная симбатная светлых бедны гетеросоединениями и, наоборот, ими богаты тяжелые нефти. В распределении их по фракциям наблюдается также определенная закономерность: гетероатомные соединения концентрируются в высококипящих фракциях и остатках.

4. 1. Серосодержащие соединения n. О количестве сернистых соединений в нефтях судят по результатам определения общего содержания серы, выраженного в процентах. n. Такой анализ является косвенным и не дает точного представления о содержании, распределении по фракциям и молекулярной структуре сернистых соединений в нефтях. n. Ориентировочно можно принять, что количество серосодержащих соединений в нефти в 10 - 12 раз превышает количество серы, определенной по анализу.

4. 1. Серосодержащие соединения n n. Очевидно, для низкокипящих фракций этот коэффициент несколько ниже, а для высокомолекулярных остатков может доходить до 15. n. Сера является наиболее распространенным гетероэлементом в нефтях и нефтепродуктах. n. Содержание ее в нефтях колеблется от сотых долей до 5 - 6% масс. , реже до 14% масс.

4. 1. Серосодержащие соединения n. Распределение серы по фракциям зависит от природы нефти и типа сернистых соединений. n. Как правило, их содержание увеличивается от низкокипящих к высококипящим и достигает максимума в остатке от вакуумной перегонки нефти гудроне. n. В нефтях идентифицированы серосодержащих соединений: n 1) следующие типы элементная сера и сероводород - не являются непосредственно сероорганическими соединениями, но появляются в результате деструкции последних;

4. 1. Серосодержащие соединения n 2) меркаптаны - тиолы, обладающие, как и сероводород, кислотными свойствами и наиболее сильной коррозионной активностью; n 3) алифатические сульфиды (тиоэфиры) - нейтральны при низких температурах, но термически мало устойчивы и разлагаются при нагревании свыше 130160°С с образованием сероводорода и меркаптанов; n 4) моно- и полициклические сульфиды - термически наиболее устойчивые.

4. 1. Серосодержащие соединения n. Элементная сера содержится в растворенном состоянии (до 0, 1% масс.) в нефтях, связанных с известняковыми отложениями. n. Она обладает сильной коррозионной активностью, особенно к цветным металлам, в частности, по отношению к меди и ее сплавам. n. Сероводород (H 2 S) обнаруживается в сырых нефтях не так часто и значительно в меньших количествах, чем в природных газах, газоконденсатах и нефтях.

4. 1. Серосодержащие соединения n. Меркаптаны (тиолы) имеют строение RSH, где R углеводородный заместитель всех типов (алканов, цикланов, аренов, гибридных) разной молекулярной массы. n. Температура кипения индивидуальных алкилмеркаптанов С 1 - С 6 составляет при атмосферном давлении 6 - 140°С. n. Они n обладают сильно неприятным запахом.

4. 1. Серосодержащие соединения n. Это свойство их используется в практике газоснабжения для предупреждения о неисправности газовой линии. n. В качестве одоранта бытовых газов используется этилмеркаптан. n. Обнаружена следующая закономерность: меркаптановая сера в нефтях и газоконденсатах сосредоточена главным образом в головных фракциях.

Элементная сера, сероводород и меркаптаны как весьма агрессивные сернистые соединения являются наиболее нежелательной составной частью нефтей. Их необходимо полностью удалять в процессах очистки всех товарных нефтепродуктов.

n. Сульфиды (тиоэфиры) составляют основную часть сернистых соединений в топливных фракциях нефти (от 50 до 80% от общей серы в этих фракциях). n. Нефтяные сульфиды подразделяют на две группы: диалкилсульфиды (тиоалканы) и циклические диалкилсульфиды RSR" (где R и R" - алкильные заместители). n. Тиоалканы содержатся преимущественно в парафинистых нефтях, а циклические - в нафтеновых и нафтено-ароматических.

n. Тиоалканы C 2 -C 7 имеют низкие температуры кипения (37 -150°С) и при перегонке нефти попадают в бензиновые фракции. n. С повышением температуры кипения нефтяных фракций количество тиоалканов уменьшается, и во фракциях выше 300°С они практически отсутствуют. n. В некоторых легких и средних фракциях нефтей в небольших количествах (менее 15 % от суммарной серы в этих фракциях) найдены дисульфиды RSSR". n. При нагревании они образуют серу, сероводород и меркаптаны.

n. Моноциклические сульфиды представляют собой пятиили шести-членные гетероциклы с атомом серы. n. Кроме того, в нефтях идентифицированы полициклические сульфиды и их разнообразные гомологи, а также тетра- и пентациклические сульфиды. n. В средних фракциях многих нефтей преобладают тиоцикланы по сравнению с диалкилсульфидами. n. Среди тиоцикланов, как правило, распространены моноциклические сульфиды. n. Полициклические более сульфиды при разгонке нефтей преимущественно попадают в масляные фракции и концентрированы в нефтяных остатках.

n. Все серосодержащие соединения нефтей, кроме низкомолекулярных меркаптанов, при низких температурах химически нейтральны и близки по свойствам к аренам. n. Промышленного применения они пока не нашли из-за низкой эффективности методов их выделения из нефтей. n. В ограниченных количествах выделяют из средних (керосиновых) фракций некоторых нефтей сульфиды для последующего окисления в сульфоны и сульфокислоты. n. Сернистые соединения нефтей в настоящее время не извлекают, а уничтожают гидрогенизационными процессами.

n. Образующийся при этом сероводород перерабатывают в элементную серу или серную кислоту. n n. В то же время в последние годы во многих странах мира разрабатываются и интенсивно вводятся многотоннажные промышленные процессы по синтезу сернистых соединений, аналогичных нефтяным, имеющих большую народнохозяйственную ценность. n. Среди них наибольшее промышленное значение имеют меркаптаны.

n. Метилмеркаптан применяют в производстве метионина белковой добавки в корм скоту и птице. n. Этилмеркаптан - одорант топливных газов. n. Тиолы C 1 - C 4 - сырье для синтеза агрохимических веществ, применяются для активации (осернения) некоторых катализаторов в нефтепереработке. n. Тиолы от бутилмеркаптана до октадецилмеркаптана используют в производстве присадок к смазочным и трансформаторным маслам, к смазочно-охлаждающим эмульсиям, применяемым при холодной обработке металлов, в производстве детергентов, ингредиентов резиновых смесей. n

n. Тиолы С 8 -С 16 являются процессов полимеризации каучуков, пластмасс. регуляторами радикальных в производстве латексов, n. Среди регуляторов полимеризации наибольшее значение имеют третичный додецилмеркаптан и нормальный додецилмеркаптан. n. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, в фармакологии, косметике и многих других областях.

n. Сульфиды служат компонентами при синтезе красителей, продукты их окисления - сульфоксиды, сульфоны и сульфокислоты - используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. n. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т. д. n. За последние годы резко возрастает применение полифениленсульфидных полимеров. n. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, великолепной химической стойкостью и совместимостью с самыми различными наполнителями.

n. Твердые покрытия из полифенилсульфида легко наносят на металл, обеспечивая надежную защиту его от коррозии. n. Тиофен и 2 -метилтиофен являются эффективными выносителями соединений марганца из карбюраторных двигателей при использовании в качестве антидетонатора циклопентадиенилкарбонил марганца. n. Учитывая наличие значительных ресурсов серосодержащих соединений в нефтях, исключительно актуальной является проблема их извлечения и рационального применения в народном хозяйстве.

4. 2. Азотсодержащие соединения Во всех нефтях в небольших количествах (менее 1%) содержится азот в виде соединений, обладающих основными или нейтральными свойствами. Большая их часть концентрируется в высококипящих фракциях и остатках перегонки нефти. Азотистые основания могут быть выделены из нефти обработкой разбавленной серной кислотой. Их количество составляет в среднем 30 -40% от суммы всех азотистых соединений.

4. 2. Азотсодержащие соединения Азотистые основания нефти представляют собой гетероциклические соединения с атомом азота в одном (реже в двух) из колец, с общим числом колец до трех. n. В основном они являются гомологами пиридина, хинолина и реже акридина.

4. 2. Азотсодержащие соединения n Нейтральные азотистые соединения составляют большую часть (иногда до 80%) азотсодержащих соединений нефти. Они представлены гомологами пиррола, бензпиррола - индола и карбазола. С повышением температуры кипения нефтяных фракций в них увеличивается содержание нейтральных и уменьшается содержание основных азотистых соединений (табл. 5). В кислотных экстрактах газойлевых фракций обнаружены гомологи пирролхинолина и карбазолхинолина, содержащие по два атома азота, один из которых имеет основную функцию, а другой нейтрален.

Таблица 5 Распределение азотистых соединений Фракция N общ. , % масс. Нефть 300 -350 0 С 350 -400 0 С 450 -500 0 С 0, 64 0, 04 0, 15 0, 49 1, 03 % масс, от N общего N основной N нейтральны й 31 100 53 33 34 69 0 47 67 66

Как основные, так и нейтральные азотистые соединения достаточно термически стабильны и не оказывают заметного влияния на эксплуатационные качества нефтепродуктов. Азотистые основания используются как дезинфицирующие средства, ингибиторы коррозии, сильные растворители, добавки к смазочным маслам и битумам, антиокислители и т. д. Однако процессах в переработки нефтяного сырья проявляют отрицательные свойства - снижают активность катализаторов, вызывают осмоление и потемнение нефтепродуктов.

4. 3. Кислородсодержащие соединения Основная часть кислорода нефтей входит в состав асфальто-смолистых веществ и только около 10% его приходится на долю кислых (нефтяные кислоты и фенолы) и нейтральных (сложные эфиры, кетоны) кислородсодержащих соединений. Они сосредоточены преимущественно в высококипящих фракциях. Нефтяные кислоты (Cn. Hm. COOH) представлены в основном циклопентан- и циклогексанкарбоновыми (нафтеновыми) кислотами и кислотами смешанной нафтеноароматической структуры. Из нефтяных фенолов идентифицированы фенол (C 6 H 5 OH), крезол (СН 3 С 6 Н 4 ОН), ксиленолы ((СН 3)2 С 6 Н 3 ОН) и их производные.

4. 3. Кислородсодержащие соединения Из бензиновой фракции некоторых нефтей выделены ацетон, метилэтил-, метилпропил-, метилизопропил-, метилбутил- и этил-изопропилкетоны и некоторые другие кетоны RCOR". В средних и высококипящих фракциях нефтей обнаружены циклические кетоны типа флуоренона, сложные эфиры (ACOR, где АС - остаток нефтяных кислот) и высокомолекулярные простые эфиры (R"OR) как алифатической, так и циклической структур, например типа бензофуранов, обнаруженных в высококипящих фракциях и остатках.

В бензиновых фракциях нефтей встречаются в малых количествах только алифатические кислоты нормального и слаборазветвленного строения. По мере повышения температуры кипения их фракций в них появляются алифатические кислоты сильноразветвленной структуры, например изопреноидного типа, а также нафтеновые кислоты. Последние составляют основную долю (до 90%) от всех кислородсодержащих соединений в средних и масляных фракциях.

n Промышленное значение из всех кислородных соединений нефти имеют только нафтеновые кислоты и их соли - нафтенаты, обладающие хорошими моющими свойствами. Поэтому отходы щелочной очистки нефтяных дистиллятов - так называемый мылонафт - используется при изготовлении моющих средств для текстильного производства.

n n Технические нефтяные кислоты (асидол), выделяемые из керосиновых и легких масляных дистиллятов, находят применение в качестве растворителей смол, каучука и анилиновых красителей; для пропитки шпал; для смачивания шерсти; при изготовлении цветных лаков и др. Натриевые и калиевые соли нафтеновых кислот служат в качестве деэмульгаторов при обезвоживании нефти. Нафтенаты кальция и алюминия являются загустителями консистентных смазок, а соли кальция и цинка являются диспергирующими присадками к моторным маслам. Соли меди защищают древесину и текстиль от бактериального разложения.

5. Смолисто-асфальтеновые вещества в нефтях и нефтяных остатках CAB представляют собой сложную многокомпонентную, исключительно полидисперсную по молекулярной массе, смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и т. д. n Выделение индивидуальных CAB из нефтей и ТНО исключительно сложно. Молекулярная структура их до сих пор точно не установлена.

5. Смолисто-асфальтеновые вещества в нефтях и нефтяных остатках Смолисто-асфальтеновые вещества (CAB) концентрируются в тяжелых нефтяных остатках (ТНО) - мазутах, полугудронах, битумах, крекинг-остатках и др. Суммарное содержание CAB в нефтях в зависимости от их типа и плотности колеблется от долей процентов до 45%, а в ТНО - достигает до 70% масс.

5. Смолисто-асфальтеновые вещества в нефтях и нефтяных остатках Современный уровень знаний и возможности инструментальных физико-химических методов исследований (например, n-d-M-метод, рентгеноструктурная, ЭПР- и ЯМР-спектроскопия, электронная микроскопия, растворимость и т. д.) позволяют лишь дать вероятностное представление о структурной организации, установить количество конденсированных нафтено-ароматических и других характеристик и построить среднестатистические модели гипотетических молекул смол и асфальтенов.

По этому признаку различают следующие условные групповые компоненты: 1) растворимые в низкомолекулярных (слабых) растворителях (изооктане, петролейном эфире) - масла и смолы (мальтены или - фракция в коксохимии). Смолы извлекают из мальтенов адсорбционной хроматографией (на силикагеле или оксиде алюминия); 2) нерастворимые в низкомолекулярных алканах С 5 -С 8, но растворимые в бензоле, толуоле, четыреххлористом углероде – асфальтены (или -фракция); 3) нерастворимые в бензине, толуоле и четыреххлористом углероде, но растворимые в сероуглероде и хинолине карбены (или a 2 -фаракция); 4) нерастворимые ни в каких растворителях - карбоиды (или a 1 -фракция).

В нефтях и нативных ТНО (т. е. не подвергнутых термодеструктивному воздействию) карбены и карбоиды отсутствуют. Под термином "масла" принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 - 500 смешанного (гибридного) строения. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в т. ч. легкие (моноциклические), средние (бициклические) и полициклические (три и более циклические). Наиболее важное значение представляют смолы и асфальтены, которые часто называют коксообразующими компонентами, и создают сложные технологические проблемы при переработке ТНО.

Смолы - вязкие малоподвижные жидкости или аморфные твердые тела от темно-коричневого до темно -бурого цвета с плотностью около единицы или несколько больше. Они представляют собой плоскоконденсированные системы, содержащие пять-шесть колец ароматического, нафтенового и гетероциклического строения, соединенные посредством алифатических структур.

Асфальтены - аморфные, но кристаллоподобной структуры твердые тела темно-бурого или черного цвета с плотностью несколько больше единицы. При нагревании не плавятся, а переходят в пластическое состояние при температуре около 300°С, а при более высокой температуре разлагаются с образованием газообразных и жидких веществ и твердого остатка - кокса. Они в отличие от смол образуют пространственные, в большей степени конденсированные, кристаллоподобные структуры. асфальтенов проявляются по таким основным показателям, как растворимость в низкомолекулярных алканах, отношение С: Н, молекулярная масса, концентрация парамагнитных центров и степень ароматичности.

n Смолы образуют истинные растворы в маслах и топливных дистиллятах, а асфальтены в ТНО находятся в коллоидном состоянии. n Растворителем для асфальтенов в нефтях являются ароматические углеводороды и смолы. n Благодаря межмолекулярным взаимодействиям асфальтены могут образовывать ассоциаты надмолекулярные структуры.

n Так, при низких концентрациях в бензоле и нафталине (менее 2 и 16% соответственно) асфальтены находятся в молекулярном состоянии. n При более высоких значениях концентраций в растворе формируются ассоциаты, состоящие из множества молекул. n Именно способностью к ассоциатообразованию обусловливается разнобой на 1 -2 порядка в результатах определения молекулярной массы асфальтенов в зависимости от метода ее определения.

n Соотношение смол к асфальтенам в нефтях и ТНО колеблется в широких пределах - (7 - 9) : 1 в остатках прямой перегонки, (1 - 7) : 1 - в окисленных остатках (битумах). n В ТНО в результате термодеструктивных процессов появляются карбены и карбоиды. n Считается, что карбены - линейные полимеры асфальтеновых молекул с молекулярной массой (100 185) тыс. , растворимые лишь в сероуглероде и хинолине. n Карбоиды являются сшитым трехмерным полимером (кристаллитом), вследствие чего они не растворимы ни в одном из известных органических растворителей.

n n Все CAB отрицательно влияют на качество смазочных масел (ухудшают цвет, увеличивают нагарообразование, понижают смазывающую способность и т. д.) и подлежат удалению. В составе нефтяных битумов они обладают рядом ценных технических свойств и придают им качества, позволяющие широко использовать их. Главные направления их использования: дорожные покрытия, гидроизоляционные материалы, строительство, производство кровельных изделий, битумно-асфальтеновых лаков, пластиков, пеков, коксов, связующих для брикетирования углей, порошковых ионитов и др. В таблице 6 приведен элементный состав нативных смол и асфальтенов, выделенных из нефтей известных месторождений России.

Таблица 6 Элементный состав нативных смол и асфальтенов некоторых нефтей России, % масс. Нефть Смолы С Н S Асфальтены N O C H S N O Бавлин 84, 52 9, 48 2, 6 0, 69 2, 76 83, 5 7, 76 3, 78 1, 15 3, 81 -ская 8, 70 83, 66 7, 87 4, 52 1, 19 2, 76 Ромаш- 81, 91 9, 38 кинска я Туйма- 84, 10 9, 80 4, 00 2, 70 84, 40 7, 87 4, 45 1, 24 2, 04 зинская Самотлорская 9, 68 2, 02 1, 60 3, 16 9, 19 1, 76 1, 69 2, 43

6. Основные направления переработки нефтей и газоконденсатов n n Существует три основных направления переработки нефти: 1) топливное; 2) топливно-масляное и 3) нефтехимическое или комплексное (топливнонефтехимическое или топливно-маслянонефтехимическое).

6. Основные направления переработки нефтей и газоконденсатов n n При топливном направлении нефть и газовый конденсат в основном перерабатываются на моторные и котельные топлива. Переработка нефти на НПЗ топливного профиля может быть глубокой и неглубокой.

Основные направления переработки нефтей и газоконденсатов n n Технологическая схема НПЗ с неглубокой переработкой отличается небольшим числом технологических процессов и небольшим ассортиментом нефтепродуктов. Выход моторных топлив по этой схеме не превышает 55 - 60 % масс. и зависит в основном от фракционного состава перерабатываемого нефтяного сырья. Выход котельного топлива составляет до 30 - 35 % масс.

Основные направления переработки нефтей и газоконденсатов n n n При глубокой переработке стремятся получить максимально высокий выход высококачественных моторных топлив путем вовлечения в их производство остатков атмосферной и вакуумной перегонки, а также нефтезаводских газов. Выход котельного топлива в этом варианте сводится к минимуму. Глубина переработки нефти при этом достигает до 70 90 % масс.

n n По топливно-масляному варианту переработки нефти наряду с моторными топливами получают различные сорта смазочных масел. Для производства последних подбирают обычно нефти с высоким потенциальным содержанием масляных фракций с учетом их качества.

n Нефтехимическая и комплексная переработка нефти предусматривает наряду с топливами и маслами производство сырья для нефтехимии (ароматические углеводороды, парафины, сырье для пиролиза и др.), а в ряде случаев - выпуск товарной продукции нефтехимического синтеза.

n Выбор конкретного направления, соответственно схем переработки нефтяного сырья и ассортимента выпускаемых нефтепродуктов обусловливается прежде всего качеством нефти, ее отдельных топливных и масляных фракций, требованиями на качество товарных нефтепродуктов, а также потребностями в них данного экономического района.

n Нефтеперерабатывающая промышленность – отрасль тяжелой промышленности, охватывающая переработку нефти и газовых конденсатов и производство высококачественных товарных нефтепродуктов: моторных и энергетических топлив, смазочных масел, битумов, нефтяного кокса, парафинов, растворителей, элементной серы, термогазойля, нефтехимического сырья и товаров народного потребления.

n Промышленная переработка нефти и газовых конденсатов на современных нефтеперерабатывающих заводах (НПЗ) осуществляется путем сложной многоступенчатой физической и химической переработки на отдельных или комбинированных крупнотоннажных технологических процессах (установках, цехах), предназначенных для получения различных компонентов или ассортиментов товарных нефтепродуктов.

Классификация процессов переработки нефти, газовых конденсатов и газов n n Технологические процессы НПЗ принято классифицировать на следующие две группы: физические и химические. 1. Физическими (массообменными) процессами достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) без химических превращений и удаление (извлечение) из фракций нефти, нефтяных остатков, масляных фракций, газоконденсатов и газов нежелательных компонентов (полициклических ароматических углеводородов, асфальтенов, тугоплавких парафинов), неуглеводородных соединений.

n n n Физические процессы по типу массообмена можно подразделить на следующие типы: 1. 1 гравитационные электрообессоливающие установки (ЭЛОУ); 1. 2 - ректификационные атмосферно-трубчатые, атмосферно-вакуумные трубчатые, гозофракционирующие установки (AT, ABT, ГФУ и др.);

n n n 1. 3 - экстракционные (деасфальтизация, селективная очистка, депарафинизация кристаллизацией); 1. 4 - адсорбционные (депарафинизация цеолитная, контактная очистка); 1. 5 - абсорбционные газофракционирующие установки (АГФУ, очистка от Н 2 S, СО 2).

n n 2. В химических процессах перерабока нефтяного сырья осуществляется путем химических превращений с получением новых продуктов, не содержащихся в исходном сырье. Химические процессы, применяемые на современных НПЗ, по способу активации химических реакций подразделяют на: 2. 1 - термические; 2. 2 - каталитические.

n n Термические процессы по типу протекающих химических реакций можно подразделить на следующие типы: 2. 1. 1 - термодеструктивные (термический крекинг, висбрекинг, коксование, пиролиз, пекование, производство технического углерода и др.); 2. 1. 2 - термоокислительные (производство битума, газификация кокса, углей и др.). В термодеструктивных процессах протекают преимущественно реакции распада (крекинга) молекул сырья на низкомолекулярные, а также реакции конденсации с образованием высокомолекулярных продуктов, например кокса, пека и др.

n n n Каталитические процессы по типу катализа можно классифицировать на следующие типы: 2. 2. 1 - гетеролитические, протекающие по механизму кислотного катализа (каталитический крекинг, алкилирование, полимеризация, производство эфиров и др.); 2. 2. 2 - гемолитические, протекающие по механизму окислительно-восстановительного (электронного) катализа (производство водорода и синтез газов, метанола, элементной серы);

n 2. 2. 3 - гидрокаталитические, протекающие по механизму бифункционального (сложного) катализа (гидроочистка, гидрообессеривание, гидрокрекинг, каталитический риформинг, изомеризация, гидродеароматизация, селективная гидродепарафинизация и др.).

Основные этапы нефтепереработки n n n С момента поступления на нефтеперерабатывающий завод нефть и получаемые из нее нефтепродукты проходят следующие основные этапы: 1. Подготовка нефти к переработке 2. Первичная переработка нефти 3. Вторичная переработка нефти 4. Очистка нефтепродуктов

Подготовка нефти к переработке Для обеспечения высоких показателей работы установок по переработке нефти в них необходимо подавать нефть с содержанием солей не более 6 г/л и воды 0, 2%. Поэтому нефть, поступающую на нефтеперерабатывающий завод (НПЗ), подвергают дополнительному обезвоживанию и обессоливанию.

Подготовка нефти к переработке Назначение – удаление солей и воды из нефти перед подачей на переработку. Эффективное обессоливание позволяет значительно уменьшить коррозию технологического оборудования установок по переработке нефти, предотвратить дезактивацию катализаторов, улучшить качество топлив, нефтяного кокса, битумов и других продуктов.

Сырье и продукция. Сырье – нефть, содержащая воду и соли. Продукция – обессоленная и обезвоженная нефть, содержащая 3 -4 мг/л солей и до 0, 1% масс. воды. Эта доочистка осуществляется на электрообессоливающих установках ЭЛОУ

Рис. 24. Принципиальная схема электрообессоливающей установки; 1, 5 - насос; 2 - подогреватель; 3 - отстойник; 4 - электродегидратор первой ступени; 6 - электродегидратор второй ступени I - сырая нефть; II- деэмульгатор; III- сброс воды; IV- подача щелочной воды; V- обессоленная и обезвоженная нефть.

ПЕРВИЧНАЯ ПЕРЕРАБОТКА НЕФТИ Переработка нефти начинается с ее перегонки. В ходе перегонки, повышая температуру, из нефти выделяют углеводороды, выкипающие в различных интервалах температур.

1. Атмосферная и вакуумная перегонка нефти Назначение – разделение нефти на фракции для последующей переработки или использования в качестве товарной продукции. Перегонка нефти осуществляется на атмосферных трубчатых (АТ) и атмосферно-вакуумных трубчатых (АВТ) установках. Установки АТ и АВТ часто комбинируются с установками обессоливания переработки бензинов. нефти и вторичной

1. Атмосферная и вакуумная перегонка нефти Сырье и продукция. Сырье – нефть, обессоленная на установках и блоках ЭЛОУ. Продукция установки: n углеводородный газ – выводится с установок в газообразном и жидком (головка стабилизации) виде, направляется для дальнейшей переработки на газофракционирующие установки, используется как топливо нефтезаводских печей;

n n n бензиновая фракция – выкипает в пределах 50 -180°С, используется как компонент товарного автомобильного бензина, сырье установок каталитическиго риформинга и пиролиза; подвергается вторичной перегонке для получения узких фракций; керосиновая фракция – выкипает в пределах 120 -315° С, используется как топливо для реактивных и тракторных карбюраторных двигателей, для освещения, как сырье установок гидроочистки; дизельная фракция (атмосферный газойль) – выкипает в пределах 180 -360° С, используется как топливо для дизельных двигателей и сырье установок гидроочистки;

n n n мазут – остаток атмосферной перегонки – выкипает выше 350°С, применяется как котельное топливо или сырье для установок гидроочистки и термического крекинга; вакуумные дистилляты (вакуумные газойли) – выкипают в пределах 350 -500°С, используются как сырье каталитического крекинга и гидрокрекинга; на НПЗ с масляной схемой переработки получают несколько (2 -3) вакуумных дистиллятов; гудрон – остаток атмосферно-вакуумной перегонки нефти, выкипает при температуре выше 500°С, используется как сырье установок термического крекинга, коксования, производства битумов и масел.

Для получения данных фракций применяют процесс, называемый ректификацией и осуществляемый в ректификационной колонне. Ректификационная колонна представляет собой вертикальный цилиндрический аппарат высотой 20 30 м и диаметром 2 - 4 м. Внутренность колонны разделена на отдельные отсеки большим количеством горизонтальных дисков, в которых имеются отверстия для прохождения через них паров нефти и жидкости.

2. Вторичная перегонка бензинов Назначение – разделение фракций, полученных при первичной перегонке, на более узкие погоны, каждый из которых затем используется по собственному назначения. На НПЗ вторичной перегонке подвергаются широкая бензиновая фракция, дизельная фракция (при получении сырья установки адсорбционного извлечения парафинов), масляные фракции, гачи и т. п. Процесс проводится на отдельных установках или блоках, входящих в состав установок АТ и АВТ.

Сырье и продукция. Сырьем является широкая бензиновая фракция н. к. – 180°С. Продукция: n фракция н. к. – 62°С – используется как компонент товарного автомобильного бензина, сырье установок изомеризации; n фракция 62 -85°С – сырье установок каталитического риформинга, на которых вырабатывается бензол;

фракция 85 -105°С – сырье установок каталитического риформинга, на которых вырабатывается толуол; n фракция 105 -140°С – сырье установок каталитического риформинга, на которых вырабатываются ксилолы; n фракция 140 -180°С – компонент товарного бензина и керосина, сырье установок каталитического риформинга и гидроочистки керосина.