Математические модели боевых действий и их классификация. Программные продукты и системы. Архитектура HLA. Единый фундамент виртуальных полигонов

JEL: O38, C44

Математическое моделирование военных конфликтов

Modelling of military conflicts

Прудский Михаил Владимирович

Аспирант кафедры информационных систем и математических методов в экономике, ПГНИУ.

Пермский государственный национальный исследовательский университет

Prudskiy Mikhail Vladimirovich

Post-graduate student of the chair of information systems and mathematical methods in economics, PSNRU.

Perm State National Research University

Russia, 614990, Perm,

Bukirevastreet, 15.

Phone: +7 342 239 6326

E-mail: [email protected]

[email protected]

Аннотация: Данная статья посвящена описанию военного конфликта, основанного на квадратичных законах Ланчестера на примере войны России в Сирии. Модель показывает течение конфликта в зависимости от соотношения сил, военной мощи сторон, логистики, а также других различных внешних факторов, а также показывает экономическую оценку потерь.

Annotation: This case suggests a model of describing the process of local war conflict, using Lanchester square law-based models in a base of war of Russia in Syria. The article shows the solutions of battle depending on military power, the quantity of forces, reinforcements and other external factors, and shows the economic value of losses.

Ключевые слова: сторона, армия, боевая группа, численность, затраты, потери, Ланчестер, самолеты, эффект, экономика.

Key words: side, army, battle group, number, expenses, losses, Lanchester, planes, effect, economy.

Введение

В современном мире военные конфликты по-прежнему играют ключевую роль во взаимоотношениях между государствами. И хотя эпоха глобальных мировых войн уже прошла благодаря изобретению ядерного оружия, различные менее масштабные локальные военные конфликты по-прежнему имеют место быть. Если посмотреть на политическую карту нашей планеты, то на ней всегда будут присутствовать очаги напряженности. В частности, на данный момент идут военные действия в Сирии, на юго-востоке Украины, в Йемене, Исламское государство на ближнем востоке, гражданские войны в центральной части Африки и т. д. Кроме конфликтов в активной фазе существуют также конфликты в замороженном состоянии, например, конфликт в Приднестровье, конфликт между двумя Кореями, Абхазский и Осетинский конфликты. Также существуют и так называемые «неактивные» конфликты. Это либо подавленные, либо погашенные конфликты, либо те, которые ещё не дошли до своей активной фазы. Примером может послужить конфликт центральной власти в Испании с её провинциями – Каталонией и Страной Басков.

Такое событие, как военный конфликт оказывает большое влияние на жизнь участников. От того, как разрешится конфликт будет зависеть расстановка сил в регионе, экономическая ситуация на территориях участников, характер социальной напряжённости на территориях конфликта, а также многое другое.

Часто бывает так, что конфликт затрагивает не только непосредственных участников, но также и внешние стороны. Любой военный конфликт является магнитом для людей, вооружений, денежных и прочих видов ресурсов. Возникновение конфликта порождает спрос на вооружения, боеприпасы, военную технику и др. и в тоже время большое количество людей становятся беженцами, которые перемещаются в расположенные рядом страны. Многие люди проникают через границу в зону боевых действий для участия в качестве наёмников.

Во многих ситуациях тот или иной исход военного конфликта выгоден участнику, не являющемуся непосредственной стороной конфликта. Например, ему необходима победа одного из участников, проигрыш или ослабление другого, взаимное уничтожение противников, заморозка конфликта или втягивание в конфликт третьей стороны.

Исход конфликта зависит от множества различных факторов. Некоторые из них являются внешними по отношению к военному противостоянию и не контролируются непосредственными участниками конфликта, однако могут серьёзно повлиять на исход боя. К их числу можно отнести вмешательство третьих сил, характер местности, настроения местного населения, погодные условия и прочие случайные или детерминированные факторы.

Согласно международному рейтинговому агентству Global Firepower (GFP) военная мощь государства складывается из следующих больших групп компонентов: численность армии и военно-технических средств, человеческие ресурсы, наземная техника, ВВС, ВМС, экономические, географические и прочие характеристики государства, ресурсы, логистика, финансирование, географические факторы.

Для предсказания эффектов от воздействия таких факторов существуют различные подходы к анализу и прогнозированию военных конфликтов.

Одним из таких способов являются математические модели, отражающих ход и обстоятельства протекания военного конфликта.

Предварительные сведения и объект исследования

Для описания военных действий в научной среде распространено использование подходов на основе модели Ланчестера , где для описания динамики численности воюющих сторон используются система линейных обыкновенныхдифференциальных уравнений вида:

где x военная сила стороны X; y – военная сила стороны Y; a,b – огневая мощь их оружия.

Огневой мощью оружия, упрощённо, является количество сил противника, которое способна уничтожить единица боевых сил стороны.

Однако в данном виде модель чересчур упрощена и для придания ей большего соответствия действительности можно использовать данную систему, дополненную новыми членами: ,

Где a , b , c , d , e , f , g , h – коэффициенты, которые могут являться значениями, изменяющимися во времени или функциями. Коэффициенты a и b – по-прежнему являются выражением истребительного качества оружия сторон. Коэффициенты c и e – интенсивность потерь от атак по площади (атака артиллерии и бомбардировки). Коэффициенты d и f – небоевые или технологические потери. Коэффициенты h и g – ввод или вывод войск в резерв .

В модели Ланчестера используется упрощение, что в армиях сторон существуют только однородные единицы.

Согласно рейтингу Global Firepower (GFP) основой военной мощи многих развитых государств, входящих в первую десятку рейтинга являются военно-воздушные силы. Именно их применение играет решающую роль в локальных конфликтах по всему миру, которые происходят с участием этих государств. Авиаудары составляют основу тактики армии США , и России в процессе борьбы с Исламским государством. Данный конфликт является асимметричным (в связи с различной информацией, которую получают стороны, а также различными типами и характером вооружений) .

Многие зарубежные исследователи посвящают свои работы военным конфликтам на Ближнем востоке , в связи постоянной активностью жителей этого региона. В частности, в решается задача противостояния регулярной армии и повстанческих формирований в Сирии. Однако целью множества иностранных интервенций является именно уничтожение противника с помощи авиаударов без участия наземных вооружённых сил.

Сложность использования авиации в военных столкновениях заключается в необходимости координировать удары различных авиационных групп в борьбе с ПВО противника.

Модель бомбардировок объектов противника

Для моделирования динамики проведения операции нанесения авиаударов с целью подавления средств сопротивления автором была создана динамическая модель армейского боя с помощью средств MS Excel, которая иллюстрирует атаку на ПВО противника и её экономические последствия. Моделирование проведено для определения динамики изменения численностей нападающих и обороняющейся группировок в зависимости от различных погодных условий.

Боевая задача атакующих групп сводится к уничтожению сопротивления группы, обороняющей стратегический объект. В сражении участвуютдве стороны – обороняющаяся (Y) и атакующая (X). К обеим сторонам в процессе сражения подходят подкрепления, увеличивающие численности сражающихся сторон. На прибытие подкрепления требуются затраты времени и ресурсов, которые зависят от местности, на которой происходит сражение, от степени её покрытия дорожными путями, их качества, уровня транспортной обеспеченности и прочих факторов.

В модели используются три параметра: расстояние до сражения; скорость, с которой подкрепления добираются до места сражения;затраты на перемещение боевой единицы в пространстве.

Также на скорость прибытия подкреплений могут влиять и внешние факторы, например, в случае воздушного боя авиационным частям для прибытия на поле боя не важны виды и характер дорог, присутствующих на местности. Однако им важна скорость и направление ветра.

С учетом вышеперечисленных особенностей функция прибытия подкрепления для авиационной группы будет иметь вид:

где X 2 – численность второй авиационной группы, S – расстояние до боя, U x – скорость самолёта, U w – скорость ветра и μ – угол направления ветра.

На истребительную способность оружия боевых единиц влияют многие факторы. Кроме технологических параметров, оцениваемых экспертно, на боевую мощь влияют характер местности, погодные условия, температура, давление, длительность пребывания в бою, освещенность мест боевых действий.

Предположим, что в результате предварительного экспертного анализа начальные качества оружия участников боя установлены на уровнях a 0 и b 0 соответственно. Однако качество оружия сторон является величиной, убывающей с течением времени из-за морального и физического истощения участников боя, в своём пределе приближаясь к значению 0.

Данная зависимость подчиняется следующему закону:

,

где a 0 – качество оружия участника в начальный момент времени, γ и δ – коэффициенты, определяющие интенсивность истощения войск.

Согласно допущениям, присутствующим в модели Чейза – Осипова –Ланчестера все самолёты атакующей стороны являются однородным между собой.

Обороняющие единицы ПВО (например, зенитные установки) также одинаковы между собой, но их поражающие характеристики отличаются от возможностей самолётных групп.

При проведении бомбардировок самолёты наносят удары сразу нескольким целям одновременно, поэтому в уравнении для ПВО коэффициент, отвечающий за атаку по площади отличен от нуля.

Принимается допущения об отсутствии подкреплений у обороняющейся стороны. Динамика численности сторон описывается следующей системой дифференциальных уравнений:

где h подчиняется закону, определённому ранее.

После анализа сводок министерства обороны, поступающих из Сирии , об уничтожении боевых объектов боевиков были оценены параметры a 0 и e для российской авиации в Сирии. Данные о численности боевых подразделений взяты из опубликованных разведданных Пентагона , а также из пресс-релиза Министерства обороны РФ (см. Таблицу 1).

Для оценки параметров боевой мощи Российской армии в Сирии параметр боевой мощи противника был задан нулевым (атакуемые объекты не оказывали сопротивления, потерь, по крайней мере по сводкам МО нет), также отсутствовали данные о поступающих подкреплениях сторон. Оценка была проведена с учетом ограничения на целую численность войск сражающихся сторон.

Численные эксперименты

Однако если в распоряжении обороняющейся стороны окажутся средства ПВО, обладающие боевой мощью, равной хотя бы 10% мощи авиационных частей РФ, расклад сил изменится.

В таблице 1 представлены параметры сторон в начальный момент времени с учетом наличия боевой мощи у обороняющейся стороны.

Таблица Таблица 1. Характеристики сторон

Показатель

Атакующая сторона

Обороняющая сторона

Численность (самолётов / единиц техники ПВО)

819

Боевая мощь от прямых атак

0,07

0,007

Боевая мощь от атак по площади

0,0024

Параметры второй атакующей авиационной группы (подкрепления): расстояние до боя: 8000 км; базовая скорость: 1000 км/ч.; скорость ветра: 50 км/ч.; угол направления ветра: 90 градусов.

При анализе исходных параметров можно заметить, что авиационные группы технологически превосходят силы ПВО, уступая им в численности.

При данных параметрах авиационным единицам атакующей стороны придётся участвовать в боях. В случае отсутствия подкрепления её силы будут разбиты, а у противника останется 196 стратегических объектов.

Процесс моделирования показал, что для того, чтобы выиграть бой при начальных погодных условиях атакующей стороне понадобится не менее 22 авиационных единиц в качестве подкрепления. Итогом боя будет сохранение трех боеспособных единиц. При изменении погодных условий на неблагоприятные (противоположное направление ветра) число данных самолётов возрастает до 23-х, а число уцелевших к концу боя уменьшается до двух.

Таким образом, данная модель позволяет учитывать влияние на результат боевых действий таких параметров, как скорость ветра и момент прибытия подкрепления.

Авиационный налёт не является единственной областью применения данной модели – расчет доступен и для других ситуаций столкновения различных родов войск, если использовать танки, боевые корабли или мотопехотные войска, заменив характеристики самолётов характеристиками данной военной техники. для сохранения описательной функции задачи необходим учёт местности, в которой происходит сражение, насколько она замедляет или ускоряет движение подкреплений.

Экономическая оценка последствий военного конфликта

Результаты данной модели позволяют оценить экономические затраты на участие в бою. Они складываются из транспортных расходов (в случае воздушного боя это расходы топлива) и будущие расходы на возмещение уничтоженных боевых единиц. В случае благоприятных погодных условий расходы топлива атакующей стороны можно сосчитать по формуле:

где – расходы на топливо в момент времени t,

– численность самолётов атакующей стороны в момент времени t,

– удельный расход топлива в момент времени,

P – стоимость единицы топлива, у.е.,

Х подкр. – размер подкреплений до момента их вступления в бой,

– начальный момент.

Таким образом, если взять в качестве параметров удельный расход топлива самолёта МИГ-29 (0,77 л/ч) и цену авиационного керосина ТС-1 (73 р./л) с сайта группы компаний «Нектон СИА», производящих топливо, то расходы обороняющей стороны при благоприятных погодных условиях составят 59638,81рублей.

В бою атакующая сторона потеряла 79 самолётов с учетом подкрепления в 22 единицы, каждая из которых стоит 30 млн. долларов. При курсе доллара на 14.09.2015 (67, 82 рубля за доллар) расходы армии на возмещение такого количества самолётов составят 2,37 млрд. долл. (161 млрд. рублей). Оборонный бюджет РФ составляет 84,5 млрд долларов. Если бы бой с данными параметрами проходил с участием РФ, то данные потери бы обошлись ей в 2,80% оборонного бюджета (0,23% ВВП). В случае отсутствия свободных денежных средств в бюджете данные потери пришлось бы восполнять за счёт заёмных средств, что бы увеличило внешний долг на 0,23%.

Увеличение расходов на оборону на один процентный пункт приводит к увеличению ВВП в России на 0,17 процентных пунктов согласно исследованию, проведённому аналитиками Сбербанка России по методике Perotti – Corsetti , причём в кризисные годы это значение доходило до 0,31 , поскольку в течение экономического кризиса 2008-2009 годов именно увеличенные расходы на национальную экономику и оборонную промышленность позволяли поддерживать экономику, не позволяя ей упасть на дополнительные 0,9-1,0%.

Также вместе с увеличением расходов на оборонный сектор государству придётся сократить инвестиционные вливания в частный сектор, что приведёт к снижению ВВП. Согласно исследованию, проведённому сотрудниками Центра экономического моделирования и прогнозирования ЗАО «ПРОГНОЗ», также при помощи процедуры Perotti – Corsetti, ежегодное падение составит 0,387% из-за влияний подобного решения на будущие периоды.

Таким образом, потери национальной экономики от участия в конфликте совокупное составят 0,08 процентных пунктов ВВП.

Поскольку расходы государства на проведение данной военной операции составили 0,23% ВВП, это приведёт к снижению национального дохода на 0,02%.

Библиографический список 4. Начальник Главного оперативного управления российского Генштаба генерал-полковник Андрей Картаполов рассказал об оперативной обстановке в Сирии. – Министерство обороны Российской Федерации (22 октября 2015, 18:15).

5. Новиков Д.А. Методология управления. – М.: Либроком, 2011. – 128 с. (Серия «Умное управление»)

6. Новиков Д.А. Иерархические модели военных действий // Управление большими системами. – 2012. – Выпуск 37. – С. 25–62.

7. Пентагон показал снимки предположительно российских самолетов в Сирии. – Рамблер «Новости» (22 сентября 2015, 11:05).

8. Юдаева К.В. Иванова Н.С. Каменских М.В. Эффективность госрасходов в России. М.: Центр макроэкономических исследований Сбербанка России, 2011. – 18 с.

9. Atkinson M.P., Gutfraind A., Kress M. When do armed revolts succeed: lessons from Lanchester theory // Journal of the Operational Research Society. – 2012. – V. 63. – P. 1363-1373.

10. MacKay N.J. When Lanchester met Richardson, the outcome was stalemate: a parable for mathematical models of insurgency // Journal of the Operational Research Society. – 2015. – V. 66, № 2. – P. 191–201.

11. Shults D., Oshchepkov I., Prudskii M., Vlasova N., Zavialov A . Mesuaring socio-economic efficiency of investment: methods comparison // 2nd International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM2015, Book 2, Vol. 3, No. SGEM2015 Conference Proceedings,(SGEM – 2015). – 2015. – P. 553-560.

12. Taha H. Operations Research: An Introduction (9th ed.). – NY: Prentice Hall, 2011. – 813 p.

ЗАРУБЕЖНОЕ ВОЕННОЕ ОБОЗРЕНИЕ № 11/2008, стр. 27-32

JWARS ВС США

Капитан 1 ранга Н . РЕЗЯПОВ ,

майор С. ЧЕСНОКОВ ,

капитан М. ИНЮХИН

В арсенал инструментария всех звеньев руководства ВС США уже довольно давно и прочно вошло компьютерное моделирование. С начала 2000-х годов военное руководство США выделяет средства имитации и моделирования боевых действий в число приоритетных технологий при формировании военно-технической политики. Высокая динамика развития вычислительной техники, технологий программирования, системотехнических основ моделирования различных реальных процессов обозначили огромный прорыв США в области разработки моделей и имитационных систем.

Основными направлениями развития моделирования в ВС США являются: оптимизация структуры ВС, выработка концепций боевого применения войск (сил), развитие тактики и оперативного искусства, оптимизация процесса приобретения новых образцов ВВТ, совершенствование оперативной и боевой подготовки и др. При этом в последнее время акцент делается на создание систем и моделей, направленных на решение задач в области строительства и применения объединенных и коалиционных группировок войск (сил). Примером может служить объединенная система моделирования боевых действий JWARS (Joint Warfare System), представляющая собой модель проведения военных операций объединенными группировками войск. Она позволяет моделировать наземные, воздушные, морские операции и боевые действия, действия сил специальных и информационных операций, защиту/ применение химического оружия, действия систем ПРО/ПВО на ТВД, управления и космической разведки, связи, тылового обеспечения.

JWARS - это современная конструктивная система моделирования, разработанная с использованием CASE-средств (автоматизированная разработка программного обеспечения) на языке программирования Smalltalk. Она использует событийное время и имитирует деятельность и взаимодействие военных подразделений. В рамках этой системы достаточно глубоко проработаны вопросы создания трехмерного виртуального боевого пространства, учета погодных условий и особенностей рельефа местности, тылового обеспечения боевых действий, создания четкой системы информационных потоков, а также вопросы поддержки принятия решений в системе управления и контроля.

Основным назначением JWARS является моделирование боевых действий объединенных оперативных формирований (ООФ), что должно повысить качество объединенного оперативного планирования и применения вооруженных сил, оценки боевых возможностей объединенных формирований и разработки концептуальных документов строительства ВС в целом.

Эта система позволяет осуществлять комплексный контроль процесса оперативного планирования и исполнения, а также многократную отработку выполнения одних и тех же задач, что существенно повышает возможности анализа результатов проводимых действий и выбора наиболее эффективного сценария применения сил и средств.

Возможности JWARS :

- позволяет планировать военные операции продолжительностью более 100 дней;

- временной масштаб моделирования 1:1000 (в 1 000 раз быстрее, чем реальное время);

- время инициализации модели до 3 мин.

Развитие модели осуществляется под непосредственным руководством начальника управления анализа и оценки программ. Подчеркивается значимость JWARS для разработки и проверки перспективных стратегических концепций, развития форм и способов боевого применения ООФ в условиях сетецентрических боевых действий.

Последняя версия JWARS отличается наличием модульной системы моделирования сети межтеатровых воинских перевозок, усовершенствованным олоком моделирования системы управления ООФ, возможностью моделирования ударов по мобильным целям, наличием геоинформационной и геофизической базы данных по Юго-Восточной Азии, Дальнему Востоку, Южной Азии и Южной Америке, возросшим быстродействием вследствие модернизации программного кода и внедрения новой технической базы, возможности конструирования сценария и др.

Моделирование применения ОМП в настоящее время охватывает имитацию защиты от химического оружия и оценку его воздействия на боевые подразделения и окружающую среду. В ближайшей перспективе планируется создание блоков моделирования оценки применения биологического и ядерного оружия.

Модель действий ВВС поддерживает решение около 20 видов типовых задач. Описываются процессы непосредственной авиационной поддержки, применения КР, нанесения массированных ракетно-авиаци-онных ударов (МРАУ), обеспечения ПВО районов боевых действий, уничтожения наземных/воздушных/морских целей, подавления системы ПВО противника, массированного применения БЛА, целеуказания и наведения при временных ограничениях, постановки мин с воздушных носителей, дозаправки в воздухе и т. д.

Модель действий ВМС содержит процессы поражения надводных целей, применения ПЛ против надводных сил, морской блокады, ПЛО (воздушными, подводными и надводными средствами), минной войны на море, поддержки наземных сил корабельной артиллерией, проведения морских десантных операций и др.

Модель действий ПРО/ПВО на ТВД базируется на оценке действий системы «Пэтриот»/ТХААД, «Иджис», лазерного оружия воздушного базирования. Имитируется ракетная угроза и функционирование интегрированной системы ПРО на ТВД.

Моделирование систем управления, связи, компьютерного обеспечения, разведки и наблюдения (C4ISR) основывается на ситуационной цифровой карте обстановки, имитации информационных потоков на поле боя, сборе и агрегации информации об обстановке с распознаванием целей, постановке задач средствам обнаружения, в том числе космическим, и др.

Процесс принятия решений основан на базе знаний по тактическим нормативам, а также предпочтениях лиц, принимающих решения.

Система позволяет моделировать работу средств РЭБ, оценивать процессы восстановления системы управления после воздействия противника.

При моделировании информационных операций имитируется прямое воздействие на системы связи, обнаружения и обработки информации противника.

В настоящее время невозможна оценка последствий динамического ввода информационных вирусов либо искажения информации в компьютерах или информационных потоках противника, а также отсутствует возможность вскрытия мер по введению в заблуждение (планируется реализовать в последующих версиях).

Моделирование функционирования космических сил и средств учитывает планируемую модернизацию (перспективный облик) сил и средств, процессы контроля космического пространства, имитацию противокосмических операций и информационной войны.

Тыловое обеспечение моделируется с учетом автономности, планирования перевозок сил и средств воздушным, железнодорожным, автомобильным, морским и трубопроводным транспортом, обеспечения со стороны союзников и др.

Примерами задач, решавшихся с помощью JWARS в условиях сетецентрических военных действий, являются оценка эффективности:

Защиты критически важных объектов (территория США, базы, группировки ВС на ТВД, силы и объекты союзников и др.);

Нейтрализации ОМП и средств его доставки;

Защиты информационных систем;

Мер по противодействию противнику посредством непрерывного наблюдения, слежения, массированного воздействия высокоточными воздушными и наземными средствами по критическим важным стационарным и мобильным целям;

Новых информационных технологий и инновационных концепций для разработки архитектуры «объединенной» системы управления и системы единой карты оперативной обстановки и др.

JWARS включает продукционную экспертную систему с выводом на основе решающих правил «если.., то.., иначе...». Обновление базы знаний (значений фактов, правил) о противнике осуществляется в результате информационного процесса разведки. База знаний

содержит также информацию о своих силах, результатах оценки обстановки, в том числе противником. Она предоставляет пользователям автоматически генерируемые решения, в которые можно вносить свои коррективы в интерактивном режиме. Решающие правила базы знаний являются ключевыми для динамического функционирования модели. В результате срабатывания правила каждому факту могут быть назначены одно или несколько действий. Действия выполняются, когда значение вычисленного факта становится равным определенной пороговой величине и производит изменения в состоянии базы данных.

Срабатывание правил также в автоматическом режиме генерирует запросы к системе разведки, которая выдает нотификации (ответы) на эти запросы. Работа правил определяет динамику поведения модели во времени. Генерируемые системой разведки ответы оцениваются критерием сатисфакции (степени удовлетворения запроса). В случае низкого значения коэффициента удовлетворения запрос переформулируется с учетом взаимозависимости между запросами и состоянием оперативной обстановки.

При оценке оперативной обстановки используется цифровая географическая карта с нанесенной сеткой координат (Common Reference Grid). Для каждой ячейки координатной сетки, соответствующей участку суши, рассчитывается значение показателя, характеризующего степень контроля ситуации своих сил и противника, на базе вычисления «силы влияния» по определенной методике. В результате каждая ячейка окрашивается в синий или красный цвет.

Модель процессов обнаружения и классификации объектов (целей) носит стохастический характер, зависящий от действий сил противника, видимости, степени радиоэлектронного противодействия, характера местности. На основе рассчитанных вероятностей определяется количество обнаруживаемых сил и средств противника из реально присутствующих, затем моделируется вероятностный процесс распознавания/классификации целей, в результате чего они соотносятся, например, либо с конкретным типом образца ВВТ, либо лишь с определенным классом образцов. Затем формируется итоговый доклад работы средства обнаружения.

Процесс ассоциации и корреляции результатов работы различных разведывательных средств в условиях единого информационного пространства заключается в следующем:

1. Результаты обнаружения каждого средства разведки наносятся на ситуационную карту.

2. Экстраполируются позиции каждого из ранее обнаруженных объектов во времени к моменту поступления новых докладов о результатах работы средств разведки.

3. На основе расчета расположения «центра масс» ранее обнаруженных объектов производится отбор вероятных кандидатов для ассоциации с объектами, информация о которых содержится во вновь поступивших докладах о результатах работы средств разведки.

4. Вычисляется вероятностная величина ассоциации объектов.

5. На базе относительной величины вероятности ассоциации определяется, является ли объект вновь обнаруженным из ранее известных или новым объектом, обнаруженным впервые.

Характер алгоритмов, используемых в JWARS:

1. Вероятностный (стохастический) процесс (Монте-Карло) - вычисления на основе генераторов случайных чисел, дискретные выходные величины (моделирование процессов обнаружения, планирование ударов СВН по наземным целям, ПРО/ПВО на ТВД, минная война на море, борьба с ПЛ, противоборство надводных сил флотов и т. д.).

2. Детерминированные вычисления (аналитические и на основе формул теории вероятностей). Возможно моделирование процессов применения и защиты от ОМП, маневрирования силами и средствами.

Свойства модели JWARS, характерные для условий сетецентрических военных действий:

Возможность динамически в интерактивном режиме реагировать на происходящие события исходя из восприятия ситуации каждой стороной на базе анализа оперативной обстановки;

Создание основы для принятия решения с использованием аналитической оценки сложившейся ситуации;

Осуществление высокой степени координации/синхронизации действий командующего ООФ с действиями подчиненных командиров во всех звеньях руководства;

Интеграция разведывательной информации для приятия решений;

Моделирование поведения «ключевых объектов» (centers of gravity) - военных и экономических - в отношении состояния ВПР противника;

Оценка реализации конечной цели военной операции (end state), например в виде изменения политики руководства государства;

Описание агрегированных критериев достижения победы (географических -отсутствие подразделений противника на определенной территории, желаемого соотношения сил - избежание потерь своих сил и союзников, нанесение поражения противнику в течение определенного времени);

Определение степени достижения целей военной операции.

Программно система JWARS состоит из трех модулей: функционального, имитационного и системного, которые объединены в единый комплекс. Функциональный модуль содержит прикладное программное обеспечение, позволяющее моделировать боевые функциональные возможности. Специальное программное обеспечение имитационного модуля создает виртуальное изображение боевого пространства. Системный модуль обеспечивает функционирование аппаратных средств системы JWARS и создает человеко-машинные интерфейсы обмена данными, с помощью которых осуществляется ввод исходных данных и получение результатов моделирования.

Функциональный модуль. Основным элементом системы JWARS является объект

боевого пространства - Battle Space Entity (BSE). Номинальный уровень детализации: батальон для общевойсковых операций, эскадрилья для воздушных операций, корабль для морских операций и разведывательные платформы для систем разведки и наблюдения. Вспомогательными объектами боевого пространства выступают объекты инфраструктуры (порты, аэродромы и т. п.), пункты управления (штабы, командные пункты, узлы связи и т. п.). Объекты боевого пространства характеризуются статическими (например, радиус поражения ударных средств) и динамическими (в частности, координаты местоположения) свойствами. Данные также включают информацию о взаимодействии объектов друг с другом и внешней средой.

Взаимодействие объектов боевого пространства в системе JWARS реализуется с помощью различных алгоритмов, которые меняются в зависимости от характера моделируемой деятельности, функциональных возможностей модели, с которой алгоритм связан, и наличия данных. Все взаимодействия между объектами боевого пространства в JWARS представляют собой события моделирования. Значимость отдельных событий может изменяться от относительно низкой до очень высокой.

Имитационный модуль. Этот модуль содержит средства имитации необходимой инфраструктуры, разработанные объектно-ориентированным методом, что обеспечивает их модульность и, следовательно, достаточную гибкость, необходимую для оперативного внесения изменений в виртуальное боевое пространство.

Система JWARS предъявляет жесткие требования к хранению и обработке данных. Для соответствия этим требованиям необходима надежная система управления базами данных. В JWARS для этих целей используется система управления базами данных (СУБД) ORACLE, которая служит для хранения всей информации, в том числе как входной, так и выходной.

Подобно другим имитационным системам последнего поколения JWARS в обязательном порядке поддерживает стандарты HLA-архитектуры.

Системный модуль. Он включает аппаратные средства системы JWARS, с помощью которых пользователи осуществляют моделирование. Человеко-машинный интерфейс используется при разработке сценариев боевых действий, ведении разведки боевого пространства, осуществлении боевого управления и контроля, а также при проведении анализа результатов.

Имитация широкого спектра военных подразделений в JWARS обеспечивается применением баз знаний о событийных данных, правилах и причинно-следственных связях, которые в совокупности позволяют аналитически описать положение своих формирований и войск (сил) противника, а также внешние условия. По заявлениям разработчиков, сравнительно небольшой набор причинно-следственных связей обеспечивает возможность моделирования различных военных операций с достаточно высокой степенью реалистичности без вмешательства человека.

Более ранние версии системы JWARS позволяли учитывать такие факторы, как уровень подготовки личного состава и его морально-психологическое состояние. В результате имелись возможности по созданию подразделений разного уровня боеспособности, с различными личными качествами командиров, такими как склонность к авантюризму, обеспокоенность некачественным решением поставленной боевой задачи и др. Эти характеристики дают определенную гибкость при создании стратегии поведения тех или иных подразделений. В последних версиях JWARS была установлена жесткая иерархия командной линии постановки задач, которая позволила в целом имитировать реальную оценку выполнения задач подчиненными подразделениями и вырабатывать оптимальные варианты их боевого применения. Другими словами, вышестоящие инстанции ставят боевую задачу и вводят ограничения для ее решения.

Главная цель создания причинно-следственных связей состоит в том, чтобы в автоматизированном режиме воспроизводить поведение подразделения исходя из складывающейся боевой обстановки. Есть возможность применения мастера создания причинно-следственных данных для выработки неограниченного числа новых правил.

Так как правила могут быть сохранены как данные, то легко формировать наборы правил, не изменяя при этом программного кода системы JWARS.

Самые простые правила JWARS используют элементарные логические отношения (больше чем, и, или, и т. д.), в то время как более сложные рассуждения о том, благоприятна ли ситуация или нет, строятся на основе более сложных отношений (если, то, иначе).

Одной из тенденций развития этого инструментария системы JWARS будет реализация в скором времени возможности построения логических причинно-следственных правил на основе математического аппарата нечеткой логики.

Для облегчения применения пользователем нечетких правил будет реализована система автоматизированной помощи и интуитивно понятного графического интерфейса.

Подразделения в системе JWARS имеют разнообразные возможности и могут выполнять различные действия или задачи одновременно, если они не противоречат друг другу (например, оставаться на месте и передвигаться). Действия подразделения могут быть изменены в зависимости от полноты данных о ситуации. Например, сталкиваясь с превосходящими силами противника, подразделение, обладающее неполной информацией относительно местоположения других дружественных союзных сил, может отступить, пока ситуация не станет более определенной. Чем более сомнительна ситуация, тем раньше будет начато отступление. Как только ситуация определится, могут быть предприняты специальные действия, соответствующие моменту. Подразделение должно использовать все имеющиеся в его распоряжении ресурсы для того, чтобы решить поставленные задачи, не нарушая ограничений, например, касающихся числа потерь личного состава и техники.

В более ранних версиях JWARS, в которых не было системы причинно-следственных связей на тактическом уровне, отмечались случаи, когда в процессе моделирования боевые подразделения вместо вступления в бой продвигались к своим целям, лишь отвечая огнем. Встречались также случаи, когда подразделения неуместно вступали в бой. База знаний причинно-следственных связей позволила улучшить возможности по оценке ситуации и вносить изменения в варианты боевого применения подразделений. Как показано на рисунке на см. ниже, подразделение атакует противника, сближается с ним, уничтожает его или заставляет отступить, а затем возобновляет выполнение первоначального задания. Тем временем подразделения обеспечения, как свои, так и противника, оценивают ситуацию как опасную и пытаются не попадать в зону ведения огня.

Правила JWARS могут быть легко связаны с определенными типами подразделений. Это позволяет пользователям формировать новые подразделения и автоматически назначать им соответствующие наборы правил и действий, основанные на различных комбинациях характеристик. Любое подразделение, созданное как боевое (бронетанковое, пехотное и т. п.), может унаследовать эти правила. Однако некоторые правила для небольших подразделений (группы глубинной разведки, группы специального назначения) могут быть более важными по отношению к общим боевым правилам.

Для обеспечения действий небоевых подразделений разрабатываются соответствующие правила, которые, например, заставляют их менять курс, чтобы избежать столкновений с противником. Боевые и небоевые подразделения, подчиняясь приказу общего начальника о перемещении в определенное местоположение, определяют свой маршрут на основе имеющихся правил. В связи с этим возможны существенные различия в их маршрутах.

Практика использования JWARS показывает, что наборы нечетких правил - это хороший инструмент для принятия сложных решений, так как они не только обеспечивают возможность выбора среди предопределенных вариантов действий, но и позволяют генерировать новые. Однако в этой системе в основном все еще используются стандартные, а не нечеткие правила в связи с полнотой наборов стандартных правил и их простотой использования при принятии структурированных решений. Большинство экспертов считает, что стандартные правила гораздо проще формулировать. Однако в перспективных версиях JWARS будут улучшены инструменты редактирования и автоматизированной проверки нечетких правил с целью облегчения работы с ними.

Один из ключевых аспектов деятельности военных подразделений - совместные действия. Поскольку одна из главных функций системы - это оценка эффективности действий различных структур, совместные действия должны быть очень гибким компонентом модели. Например, обеспечение ресурсами подразделений в JWARS может осуществляться из многочисленных источников, часть из которых в определенных условиях обстановки предпочтительнее, но при этом любой из них отвечает минимальным требованиям. Понимание этого компромисса будет главной задачей применения баз знаний в областях совместного использования ограниченных ресурсов. Подразделения в системе JWARS не договариваются о совместных действиях и не формируют временные коалиции, а запрашивают дополнительные ресурсы и используют запасы, основываясь на оценке ситуации. Таким образом, подразделение, участвующее в боевых действиях, может запросить дополнительную огневую поддержку и получить ее от одного или более источников в зависимости от расставленных приоритетов. При следующем запросе в качестве обеспечивающего может выступить другое подразделение или вид оружия, но в любом случае поддержка будет осуществляться, пока не исчерпаны все ресурсы.

В целом необходимо отметить, что развитие систем моделирования и имитации в США рассматривается как один из основных факторов обеспечения эффективности строительства и применения ВС. Громадный потенциал, накопленный в данной области, уже сейчас оценивается как значительно опережающий возможности других стран мира в этой сфере. В перспективе ожидается дальнейшее глобальное комплексирование моделей и внедрение систем виртуальной реальности (искусственного многомерного боевого пространства) на базе телекоммуникационных сетей, призванных обеспечить доступ пользователей как к оперативной, так и физической моделируемой среде, стандартизированным моделям и базам данных, а также к различного рода сценариям. Перспективные системы моделирования боевых действий будут имитировать применение ВС на любом континенте, на море, в воздухе и космическом пространстве, весь спектр их задействования (включая миротворческие операции, борьбу с терроризмом и т. п.). Системы будущего смогут с высокой степенью точности моделировать действия на фоне искусственно созданной боевой обстановки, воспроизводящей особенности любого ТВД. В качестве противника будут выступать как полностью, так и частично компьютеризированные «аналоги» реальных войсковых формирований.

По степени задействования человека зарубежные специалисты четко разделяют все средства моделирования и имитации на натурные, виртуальные и конструктивные. Конструктивные средства предполагают применение виртуальных войск (сил) в виртуальном боевом пространстве.

Под HLA-архитектурой понимается структура имитационной системы на уровне взаимосвязей отдельных компонентов, а также стандарты, правила и спецификации интерфейсов, определяющие взаимодействие моделей при разработке, модификации и функционировании.

Для комментирования необходимо зарегистрироваться на сайте

МОДЕЛИРОВАНИЕ БОЕВЫХ ДЕЙСТВИЙ - ме-тод во-енно-тео-ре-тического или во-енно-тех-нического ис-сле-до-ва-ния объ-ек-тов (сис-тем, яв-ле-ний, со-бы-тий, про-цес-сов), уча-ст-вую-щих (про-ис-хо-дя-щих) в хо-де бое-вых дей-ст-вий, пу-тём соз-да-ния и изу-че-ния их мо-де-лей (ана-ло-гов) в це-лях по-лу-че-ния зна-ний о фи-зических, ин-фор-мационных и иных про-цес-сах воо-руженной борь-бы, а так-же для срав-не-ния ва-ри-ан-тов ре-ше-ний ко-ман-дую-щих (ко-ман-ди-ров), пла-нов и про-гно-зов ве-де-ния бое-вых дей-ст-вий, оцен-ки влия-ния на них различных фак-то-ров.

В за-ви-си-мо-сти от це-лей соз-да-ния и пред-на-зна-че-ния мо-де-ли моделирования боевых действий под-раз-де-ля-ют на ис-сле-до-ва-тель-ское, управ-ленческое, штаб-ное (административное), обу-чаю-щее (учеб-ное). По мас-шта-бу моделирование боевых действий бы-ва-ет стра-те-ги-че-ским, опе-ра-тив-ным и так-ти-че-ским. По при-ро-де ис-поль-зуе-мых мо-де-лей и сфе-ре их при-ме-не-ния раз-ли-ча-ют моделирование боевых действий ма-те-ри-аль-ное (пред-мет-ное) и иде-аль-ное.

Ма-те-ри-аль-ное моделирование боевых действий, как пра-ви-ло, при-ме-ня-ет-ся при ис-сле-до-ва-нии та-ких объ-ек-тов, ко-то-рые не-воз-мож-но (ли-бо очень слож-но) опи-сать ма-те-ма-ти-че-ски с дос-та-точ-ной точ-но-стью. Оно, в свою оче-редь, мо-жет быть фи-зи-че-ским, ос-но-ван-ным на по-до-бии (сход-ст-ве) фи-зической при-ро-ды про-то-ти-пов и мо-де-лей (напр., уче-ние как мо-дель для ис-сле-до-ва-ния боя), и ана-ло-го-вым, обес-пе-чи-ваю-щим сход-ст-во в опи-са-нии про-цес-сов, про-те-каю-щих в про-то-ти-пах и мо-де-лях [напр., пе-ре-да-ча элек-трических сиг-на-лов как мо-дель пе-ре-да-чи ин-фор-ма-ции в сис-те-мах управ-ле-ния вой-ска-ми (си-ла-ми) и ору-жи-ем (сред-ст-ва-ми) в хо-де бое-вых дей-ст-вий]. Од-на-ко та-кое мо-де-ли-ро-ва-ние обу-слов-ли-ва-ет зна-чительные ма-те-ри-аль-ные, фи-нан-со-вые и др. за-тра-ты.

Иде-аль-ное Моделирование боевых действий ос-но-вы-ва-ет-ся на мыс-лен-ной идеа-ли-зи-ро-ван-ной ана-ло-гии ре-аль-ных про-то-ти-пов и их мо-де-лей, а по спо-со-бу от-ра-же-ния ре-аль-ных про-то-ти-пов оно де-лит-ся на зна-ко-вое (се-мио-тическое) и ин-туи-тив-ное. Зна-ко-вое мо-де-ли-ро-ва-ние ос-но-вы-ва-ет-ся на се-мио-ти-ке (тео-рии зна-ко-вых сис-тем), и по спо-со-бу пред-став-ле-ния мо-де-лей раз-ли-ча-ют ма-те-ма-тическое (ана-ли-тич.), ал-го-рит-мическое, ло-гическое и гра-фи-ческое моделирование боевых действий.

Воз-мож-ны так-же разл. со-че-та-ния мо-де-лей, например при ло-ги-ко-ма-те-ма-тическое моделирование боевых действий. Ин-туи-тив-ное моделирование боевых действий ос-но-вы-ва-ет-ся на ис-поль-зо-ва-нии мо-де-лей с не-стро-гим, не все-гда чёт-ким сло-вес-ным (вер-баль-ным) опи-са-ни-ем про-то-ти-пов, с ги-по-те-тическим, эв-ри-стическим ха-рак-те-ром от-ра-же-ния тен-ден-ций раз-ви-тия си-туа-ций, яв-ле-ний, их взаи-мо-влия-ний, и по спо-со-бу фор-ми-ро-ва-ния ги-по-тез , эв-ри-стик раз-ли-ча-ют моделирование боевых действий, ос-но-ван-ное на ме-то-де сце-на-ри-ев, опе-рационной иг-ре и мыс-лен-ном экс-пе-ри-мен-те. Ин-туи-тив-ное моделирование боевых действий при-ме-ня-ет-ся для вы-ра-бот-ки за-мыс-ла и при-ня-тия ре-ше-ния на ве-де-ние бое-вых дей-ст-вий, обу-че-ния долж-но-ст-ных лиц ор-га-нов управ-ле-ния вой-ска-ми (си-ла-ми), про-ве-де-ния во-енно-на-учных ис-сле-до-ва-ний (ве-ри-фи-ка-ции вы-дви-гае-мых на-учных ги-по-тез, пред-ло-же-ний во-енно-тео-ре-тического и во-енно-тех-нического ха-рак-те-ра).

Мно-гие из пе-ре-чис-лен-ных форм моделирования боевых действий в прак-ти-ке во-енно-при-клад-ных ис-сле-до-ва-ний и управ-ленческо дея-тель-но-сти шта-бов ис-поль-зу-ют-ся в ви-де ими-тационных мо-де-лей. Под ими-та-ци-ей здесь по-ни-ма-ет-ся вос-про-из-ве-де-ние изу-чае-мых ре-аль-ных про-цес-сов ве-де-ния бое-вых дей-ст-вий другой сис-те-мой (др. сред-ст-ва-ми, в из-ме-нён-ном мас-шта-бе про-стран-ст-ва и вре-ме-ни), но с со-блю-де-ни-ем ана-ло-гии ме-ж-ду ре-аль-ны-ми и ими-ти-руе-мы-ми про-цес-са-ми от-но-си-тель-но су-ще-ст-вен-ных, с точ-ки зре-ния ис-сле-до-ва-те-ля, свойств этих про-цес-сов. Ими-тационные мо-де-ли реа-ли-зу-ют-ся, как пра-ви-ло, на ЭВМ.

Моделирование боевых действий наи-бо-лее ши-ро-ко при-ме-ня-ет-ся в ин-те-ре-сах обос-но-ва-ния при-ни-мае-мых ре-ше-ний в об-лас-ти управ-ле-ния вой-ска-ми (си-ла-ми) при под-го-тов-ке и ве-де-нии бое-вых дей-ст-вий, строи-тель-ст-ве во-оруженных сил, раз-ра-бот-ке про-грамм раз-ви-тия во-ору-же-ний, а так-же при оцен-ке эф-фек-тив-но-сти ис-поль-зо-ва-ния но-вых об-раз-цов ору-жия, опе-ра-тив-ной под-го-тов-ке шта-бов и др.

Процесс создания математических моделей боевых действий трудоемок, длителен и требует использования труда специалистов достаточно высокого уровня, имеющих хорошую подготовку как в предметной области, связанной с объектом моделирования, так и в области прикладной математики, современных математических методов, программирования, знающих возможности и специфику современной вычислительной техники. Отличительной особенностью математических моделей боевых действий, создаваемых в настоящее время, является их комплексность, обусловленная сложностью моделируемых объектов. Необходимость построения таких моделей требует разработки системы правил и подходов, позволяющих снизить затраты на разработку модели и уменьшить вероятность появления трудноустранимых впоследствии ошибок. Важной составной частью такой системы правил являются правила, обеспечивающие корректный переход от концептуального к формализованному описанию системы на том или ином математическом языке, что достигается выбором определенной математической схемы. Под математической схемой понимается частная математическая модель преобразования сигналов и информации некоторого элемента системы, определяемая в рамках конкретного математического аппарата и ориентированная на построение моделирующего алгоритма данного класса элементов сложной системы .

В интересах обоснованного выбора математической схемы при построении модели целесообразно провести ее классификацию по цели моделирования, способу реализации, типу внутренней структуры, сложности объекта моделирования, способу представления времени.

Необходимо отметить, что выбор классификационных признаков определяется конкретными целями исследования. Целью классификации в данном случае является, с одной стороны, обоснованный выбор математической схемы описания процесса боевых действий и ее представление в модели в интересах получения достоверных результатов, а с другой - выявление особенностей моделируемого процесса, которые необходимо учитывать.

Цель моделирования - исследование динамики протекания процесса вооруженной борьбы и оценка показателей эффективности боевых действий. Под такими показателями понимается численная мера степени выполнения боевой задачи, которую количественно можно представить, например, относительной величиной предотвращаемого ущерба объектам обороны или наносимого противнику ущерба.

Способ реализации должен состоять в формализованном описании логики функционирования образцов вооружения и военной техники (ВВТ) в соответствии со своими аналогами в реально протекающем процессе. Необходимо учитывать, что современные образцы ВВТ - это сложные технические системы, решающие комплекс взаимосвязанных задач, которые тоже являются сложными техническими системами. При моделировании таких объектов целесообразно сохранить и отразить как естественный состав и структуру, так и алгоритмы боевого функционирования модели. Причем в зависимости от целей моделирования может потребоваться варьирование этими параметрами модели (составом, структурой, алгоритмами) для различных вариантов расчета. Данное требование определяет необходимость разрабатывать модель конкретного образца ВВТ как составную модель его подсистем, представляемых взаимосвязанными компонентами.

Таким образом, по классификационному признаку тип внутренней структуры модель должна быть составной и многокомпонентной, по способу реализации - обеспечивать имитационное моделирование боевых действий.

Сложность объекта моделирования. При разработке компонент, определяющих состав моделей образцов ВВТ, и объединении моделей образцов ВВТ в единую модель боевых действий необходимо учитывать отличающиеся на порядки характерные масштабы осреднения по времени величин, фигурирующих в компонентах.

Конечной целью моделирования является оценка показателей эффективности боевых действий. Именно для расчета этих показателей и разрабатывается модель, воспроизводящая процесс боевых действий, который условно назовем главным. Характерный временной масштаб всех остальных входящих в него процессов (первичной обработки радиолокационной информации, сопровождения целей, наведения ракет и др.) много меньше главного. Таким образом, все протекающие в вооруженной борьбе процессы целесообразно разделить на медленные, прогноз развития которых интересует, и быстрые, характеристики которых не интересуют, однако их влияние на медленные необходимо учитывать. В таких случаях характерный временной масштаб осреднения выбирается так, чтобы иметь возможность составить модель развития главных процессов. Что касается быстрых процессов, то в рамках создаваемой модели необходим алгоритм, позволяющий в моменты осуществления быстрых процессов учитывать их влияние на медленные.

Возможны два подхода к моделированию влияния быстрых процессов на медленные. Первый состоит в разработке модели их развития с соответствующим характерным временным масштабом осреднения, много меньшим, чем у главных процессов. При расчете развития быстрого процесса в соответствии с его моделью характеристики медленных процессов не меняются. Результатом расчета является изменение характеристик медленных процессов, с точки зрения медленного времени происходящее мгновенно. Для того чтобы иметь возможность реализовать этот способ расчета влияния быстрых процессов на медленные, необходимо вводить соответствующие внешние величины, идентифицировать и верифицировать их модели, что усложняет все этапы технологии моделирования.

Второй подход состоит в отказе от описания развития быстрых процессов с помощью моделей и рассмотрения их характеристик в качестве случайных величин. Для реализации этого способа необходимо иметь функции распределения случайных величин, которые характеризуют влияние быстрых процессов на медленные, а также алгоритм, определяющий моменты наступления быстрых процессов. Вместо расчета развития быстрых процессов производится выброс случайного числа и в зависимости от выпавшего значения в соответствии с известными функциями распределения случайных величин определяется значение, которое примут зависимые показатели медленных процессов, таким образом учитывается влияние быстрых процессов на медленные. В результате характеристики медленных процессов также становятся случайными величинами.

Необходимо отметить, что при первом способе моделирования влияния быстрых процессов на медленные быстрый процесс становится медленным, главным, и на его протекание влияют быстрые уже по отношению к нему процессы. Эта иерархическая вложенность быстрых процессов в медленные - одна из составляющих того качества моделирования процесса вооруженной борьбы, которое относит модель боевых действий к структурно-сложной.

Способ представления модельного времени. На практике используют три понятия времени: физическое, модельное и процессорное. Физическое время относится к моделируемому процессу, модельное - к воспроизведению физического времени в модели, процессорное - это время выполнения модели на компьютере. Соотношение физического и модельного времени задается коэффициентом K, определяющим диапазон физического времени, принимаемого за единицу модельного времени.

В силу дискретного характера взаимодействия образцов ВВТ и их представления в виде компьютерной модели модельное время целесообразно задавать путем приращения дискретных временных отрезков. При этом возможны два варианта его представления: 1) дискретное время есть последовательность равноудаленных друг от друга вещественных чисел; 2) последовательность временных точек определяется значимыми событиями, происходящими в моделируемых объектах (событийное время). С точки зрения вычислительных ресурсов второй вариант более рационален, поскольку позволяет активизировать объект и имитировать его работу только при наступлении некоторого события, а в промежутке между событиями предполагать, что состояние объектов остается неизменным.

Одной из основных задач при разработке модели является выполнение требования синхронизации всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели. При непрерывном представлении времени считается, что существуют единые для всех объектов часы, которые показывают единое время. Передача информации между объектами происходит мгновенно, и таким образом, сверяясь с едиными часами, можно установить временную последовательность всех происходивших событий. Если в модели существуют объекты с дискретным представлением времени, для формирования единых часов модели необходимо объединить множество временных отсчетов моделей объектов, упорядочить и доопределить значения сеточных функций на недостающих временных отсчетах. Синхронизировать модели объектов с событийным временем можно только явно, путем передачи сигнала о наступлении события. При этом необходима управляющая программа-планировщик организации выполнения событий различных объектов, которая и определяет требуемый хронологический порядок выполнения событий.

В модели боевых действий необходимо совместно использовать событийное и дискретное время, такое представление времени называют гибридным. При его использовании моделируемые объекты приобретают свойство изменять значения некоторых показателей состояния скачкообразно и практически мгновенно, то есть становятся объектами с гибридным поведением.

Подводя итог приведенной классификации, можно сделать вывод о том, что модель боевых действий должна представлять собой составную, структурно-сложную, многокомпонентную, динамическую, имитационную модель с гибридным поведением.

Для формализованного описания такой модели целесообразно использовать математическую схему на основе гибридных автоматов . В этом случае образцы ВВТ представляются многокомпонентными активными динамическими объектами. Компоненты описываются набором переменных состояния (внешние и внутренние), структурой (одноуровневой или иерархической) и поведением (карта поведения). Взаимодействие между компонентами осуществляется посредством посылки сообщений. Для объединения компонент в модель активного динамического объекта используются правила композиции гибридных автоматов.

Введем следующие обозначения:

sÎRn - вектор переменных состояния объекта, который определяется совокупностью входных воздействий на объект , воздействий внешней среды , внутренних (собственных) параметров объекта hkÎHk,;

Множество вектор-функций, определяющих закон функционирования объекта во времени (отражают его динамические свойства) и обеспечивающих существование и единственность решения s(t);

S0 - множество начальных условий, включающее все начальные условия компонент объекта, порождаемые функцией инициализации в процессе функционирования;

Предикат, определяющий смену поведения объекта (выделяет из всех специально отобранных состояний нужное, проверяет условия, которые должны сопутствовать наступившему событию, и принимает при их выполнении значение истина), задается множеством булевских функций;

Инвариант, определяющий некое свойство объекта, которое должно сохраняться на заданных промежутках времени, задается множеством булевских функций;

- множество вещественных функций инициализации, ставящих в соответствие значению решения в правой конечной точке текущего промежутка времени значение начальных условий в левой начальной точке на новом временном промежутке :s()=init(s());

Гибридное время, задается последовательностью временных отрезков вида , - замкнутые интервалы.

Элементы гибридного времени Pre_gapi, Post_gapi являются «временной щелью» очередного такта гибридного времени tH={t1, t2,…}. На каждом такте на отрезках локального непрерывного времени гибридная система ведет себя как классическая динамическая система до точки t*, в которой становится истинным предикат, определяющий смену поведения. Точка t* является конечной точкой текущего и началом следующего интервала. В интервале расположены две временные щели, в которых могут изменяться переменные состояния. Течение гибридного времени в очередном такте ti=(Pre_gapi,, Post_gapi) начинается с вычисления новых начальных условий во временной щели Pre_gapi. После вычисления начальных условий проводится проверка предиката на левом конце нового промежутка времени. Если предикат принимает значение истина, оcуществля-ется переход сразу во вторую временную щель, в противном случае выполняется дискретная после-довательность действий, соответствующих текущему такту времени. Временная щель Post_gapi предназначена для выполнения мгновенных дейст-вий после завершения длительного поведения на данном такте гибридного времени.

Под гибридной системой H понимается математический объект вида

.

Задача моделирования заключается в нахождении последовательности решений Ht={(s0(t),t, t0), (s1(t),t,t1),…}, определяющих траекторию гибридной системы в фазовом пространстве состояний. Для нахождения последовательности решений Ht необходимо проводить эксперимент или имитацию на модели при заданных исходных данных. Другими словами, в отличие от аналитических моделей, с помощью которых получают решение известными математическими методами, в данном случае необходим прогон имитационной модели, а не решение. Это означает, что имитационные модели не формируют свое решение в том виде, в каком это имеет место при использовании аналитических моделей, а являются средством и источником информации для анализа поведения реальных систем в конкретных условиях и принятия решений относительно их эффективности.

В 2 ЦНИИ МО РФ (г. Тверь) на основе представления моделируемых объектов в виде гибридных автоматов разработан имитационный моделирующий комплекс (ИМК) «Селигер», предназначенный для оценки эффективности группировок сил и средств воздушно-космической обороны при отражении ударов средств воздушно-космическо-го нападения (СВКН). Основу комплекса составляет система имитационных моделей объектов, имитирующая алгоритмы боевого функционирования реальных образцов ВВТ (зенитно-ракетный комплекс, радиолокационная станция, комплекс средств автоматизации командного пункта (для радиотехнических войск - радиолокационной роты, батальона, бригады, для зенитно-ракетных войск - полка, бригады и др.), боевой авиационный комплекс (истребительной авиации и средств воздушно-космического нападения), средства радиоэлектронного подавления, огневые комплексы нестратегической противоракетной обороны и др.). Модели объектов представлены в виде активных динамических объектов (АДО), в состав которых входят компоненты, позволяющие исследовать в динамике различные процессы при их функционировании.

Например, радиолокационная станция (РЛС) представлена следующими компонентами (рис. 1): антенная система (АС), радиопередающее устройство (РПрдУ), радиоприемное устройство (РПрУ), подсистема защиты от пассивных и активных помех (ПЗПАП), блок первичной обработки информации (ПОИ), блок вторичной обработки информации (ВОИ), аппаратура передачи данных (АПД) и др.

Композиция данных компонент в составе модели РЛС позволяет адекватно моделировать процессы приема-передачи сигналов, обнаружения эхосигналов и пеленга, алгоритмы помехозащиты, измерения параметров сигнала и др. В результате моделирования рассчитываются основные показатели, характеризующие качество РЛС как источника радиолокационной информации (параметры зоны обнаружения, точностные характеристики, разрешающая способность, производительность, помехозащищенность и т.п.), что позволяет оценить эффективность ее работы при различных условиях помехоцелевой обстановки.

Синхронизация всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели, осуществляется программой управления объектами (рис. 2). В функции данной программы также входят создание и удаление объектов, организация взаимодействия между объектами, протоколирование всех событий, происходящих в модели.

Использование протокола событий позволяет проводить ретроспективный анализ динамики боевых действий любым моделируемым объектом. Это дает возможность оценить степень адекватности моделей объектов как с использованием методов предельных точек, так и посредством контроля корректности моделирования процессов в компонентах объекта (то есть проверка адекватности методом прогона от входа к выходу ), что повышает достоверность и обоснованность получаемых результатов.

Необходимо отметить, что многокомпонентный подход позволяет варьировать их составом (например, исследовать боевую работу ЗРК с различным типом АСЦУ) в интересах синтеза структуры, удовлетворяющей определенным требованиям. Причем за счет типизации программного представления компонент, без перепрограммирования исходного кода программы.

Общим преимуществом данного подхода при построении модели является возможность оперативного решения ряда исследовательских задач: оценка влияния изменения состава и структуры системы управления (количество уровней, цикл управления и др.) на эффективность боевых действий группировки в целом; оценка влияния различных вариантов информационного обеспечения на потенциальные боевые возможности образцов и группировки в целом, исследование форм и способов боевого применения образцов и др.

Построенная на основе гибридных автоматов модель боевых действий представляет собой суперпозицию совместного поведения параллельно и/или последовательно функционирующих и взаимодействующих многокомпонентных АДО, являющихся композицией гибридных автоматов, функционирующих в гибридном времени и взаимодействующих через связи на основе сообщений.

Литература

1. Сирота А.А. Компьютерное моделирование и оценка эффективности сложных систем. М.: Техносфера, 2006.

2. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. СПб: БХВ-Петербург, 2006.

Военная историческая библиотека

Главная Энциклопедия Словари Подробнее

Моделирование в военном деле

Метод военно-теоретического или военно-технического исследования объекта (явления, процесса, системы) путем создания и изучения его аналога (модели) способного замещать изучаемый объект в процессе исследования с целью получения информации о реальной системе. По сравнению с реальной системой (прототипом) модель может иметь совершенно иную природу. Между реальной системой и ее моделью должно быть установлено определенное соответствие (аналогия) по тем признакам (факторам, свойствам), которые в той или иной мере должны быть обязательно учтены для достижения цели исследования. Выявленные в процессе М. свойства и особенности поведения модели переносятся с использованием метода аналогий на реальный (моделируемый) объект. Степень соответствия модели тому фрагменту реальной действительности, для изучения которой формируется модель, называется адекватностью модели. Неадекватная модель не способна замещать прототип (оригинал) в процессе исследования, т.к. в этом случае нарушается логическая основа М. - возможность переноса информации об одних объектах на другие, т.е. возможность формирования умозаключения по аналогии. М. - основная методологическая концепция познания и практического овладения реальной действительностью в военном деле и является в определенном смысле обобщением метода аналогий. Различают материальное (предметное) и идеальное М.

При материальном М. в качестве модели предполагается использование некоторого материального предмета. По природе аналогии материальное М. делят на физическое (макетирование, обеспечивающее аналогию физической природы оригинала и модели) и аналоговое (обеспечивающее сходство процессов, протекающих в оригинале и модели). Идеальное М. основывается на мысленной идеализированной аналогии реального объекта и его модели, а по способу отражения реального объекта (или по глубине формализации) делится на знаковое и интуитивное М. По способу представления знаковых моделей различают математическое, логическое (логико-математическое) и графическое М.

Математическое М. предполагает использование математической модели, под которой понимают систему математических соотношений, зависимостей (обычно в форме математических уравнений и ограничивающих условий), описывающую с определенных сторон исследуемый объект и замещающую его в процессе познания. По вычислимости различных показателей, отношений и т.п. методы математического М. делятся на аналитические и алгоритмические.

Интуитивное М. проводится на вербальном (описательном) уровне. При этом методе ограничиваются лишь анализом качественных обобщенных понятий, отражающих общие тенденции развития явлений. Многие из перечисленных форм и способов М. используется в форме имитационного М., при котором в качестве аналога изучаемого фрагмента реальной действительности применяется модель имитационная.

Имитационное М. представляет собой процесс конструирования модели имитационной сложной реальной системы и постановки эксперимента на этой модели с целью либо понять поведение системы, либо оценить (в рамках соответствующих ограничений) различные стратегии (способы действий), обеспечивающие функционирование данной системы. Имитационное М., является методом исследования направленным на описание поведения системы; выдвижение предположений и гипотез, которые могут объяснить наблюдаемое поведение системы; использование этих гипотез для предсказания будущего поведения. Этот метод М. является одним из самых действенных инструментов исследования сложных систем, управление которыми связано с принятием решений в условиях неопределенности. При имитационном М. процессы функционирования системы-оригинала подменяются процессами, имитируемыми другой системой (моделью), но с соблюдением основных правил (режимов, алгоритмов) функционирования оригинала. В процессе имитации фиксируются определенные события и состояния или измеряются выходные воздействия, по которым вычисляются характеристики качества функционирования системы. С помощью моделей, имитирующих реальность, исследователь проводит серии специально организованных вариантных расчетов («прогоны» модели) и получает те знания, без которых выбрать альтернативный вариант своей стратегии он не может. Имитационное М. издавна используются в военном деле. Военные игры (маневры, учения, командно-штабные учения и т.д.), проводятся для проигрывания (имитации) предстоящих операций и относятся к имитационному моделированию. Так в РВСН при проведении командно-штабных военных игр широко используются штабные математические модели и другие, отражающие связь эффективности боевых действий с факторами ее определяющими. В связи с бурным развитием вычислительной техники широкое распространение получили военные игры с использованием ЭВМ. Имитационное исследование, проводимое с использованием имитационных моделей, является основной формой системного анализа эффективности боевых действий. События при имитации разворачиваются во времени, как правило, в том порядке, в каком они следуют в реальной системе, но в измененной временной шкале. Действие случайных факторов учитывается с помощью специальных датчиков случайных чисел (имитаторов). В определенном месте процесс имитации может быть приостановлен для проведения, например, операционной военной игры, экспертного опроса или натурного эксперимента с использованием промежуточных данных, полученных при машинной имитации. Результаты игры, экспертизы или эксперимента могут быть использованы для продолжения имитации процесса на ЭВМ.

К настоящему времени наиболее распространено М. процессов вооруженной борьбы (боя, удара, сражения, операции и т.п.) с целью обоснования принимаемых решений в области управления войсками и оружием при подготовке и ведении боевых действий, строительстве вооруженных сил, разработке программ развития вооружений, оперативной подготовке штабов и т.д. При изучении боевых действий Ракетных войск стратегического назначения метод М. является практически единственным методом познания и выработки военно-технических решений. К настоящему времени создан большой класс моделей одиночных, групповых и массированных ударов группировок РВСН разнообразного состава в различных формах боевого применения (в ответном, ответно-встречном, упреждающем ударах), предназначенных в основном для исследования эффективности боевых действий в широком диапазоне возможных условий обстановки. Эти модели выражают связь эффективности боевых действий с различного рода факторами, её определяющими. Особое значение имеют задачи планирования ракетно-ядерных ударов (в частности, задача целераспределения), решаемые только с использованием метода М. Не менее важную роль играет М. при выборе рационального состава и структурно-функционального облика системы вооружения ВС и, в частности, РВСН. В этом направлении М. является основным методом при обосновании предложений в Государственную программу вооружения, а также при формировании государственного оборонного заказа. При создании ракетно-ядерного вооружения в период научно-исследовательских работ и опытно-конструкторских разработок метод М. можно назвать ведущим, особенно на стадии, так называемого, внешнего проектирования систем, а также в практике военно-экономического анализа ракетного вооружения. Исследование способов преодоления систем ПРО требует использования различных методов и приемов М. Современная теория ядерного сдерживания базируется на широком, всеохватывающем использовании разнообразных методов М.