Усечённый конус

Полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Далее будет рассматриваться именно этот случай, если не оговорено обратное. Если основание конуса представляет собой многоугольник , конус становится пирамидой .

"== Связанные определения ==

  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса .
  • Объединение образующих конуса называется образующей (или боковой ) поверхностью конуса . Образующая поверхность конуса является конической поверхностью .
  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса .
  • Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым . При этом прямая, соединяющая вершину и центр основания, называется осью конуса .
  • Косой (наклонный ) конус - конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.
  • Круговой конус - конус, основание которого является кругом.
  • Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой , содержащей катет (эта прямая представляет собой ось конуса).
  • Конус, опирающийся на эллипс , параболу или гиперболу , называют соответственно эллиптическим , параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
  • Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом .

Свойства

  • Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.
  • Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.
  • Телесный угол при вершине прямого кругового конуса равен
где - угол раствора конуса (то есть удвоенный угол между осью конуса и любой прямой на его боковой поверхности).
  • Площадь боковой поверхности такого конуса равна
где - радиус основания, - длина образующей.
  • Объем кругового конуса равен
  • Пересечение плоскости с прямым круговым конусом является одним из конических сечений (в невырожденных случаях - эллипсом, параболой или гиперболой, в зависимости от положения секущей плоскости).

Обобщения

В алгебраической геометрии конус - это произвольное подмножество векторного пространства над полем , для которого для любого

См. также

  • Конус (топология)

Wikimedia Foundation . 2010 .

Смотреть что такое "Конус (геометрическая фигура)" в других словарях:

    Конус: В математике Конус геометрическая фигура. Конус над топологическим пространством. Конус(Теория Категорий). В технике Конус инструментальный метод сопряжения инструмента и шпинделя в станках. Конусное устройство узел… … Википедия

    Геометрия раздел математики, тесно связанный с понятием пространства; в зависимости от форм описания этого понятия возникают различные виды геометрии. Предполагается, что читатель, приступая к чтению этой статьи, обладает некоторыми… … Энциклопедия Кольера

    Визуализация изображения информации на экране дисплея (монитора). В отличие от воспроизведения изображения на бумаге или ином носителе, изображение, созданное на экране, можно почти немедленно стереть или (и) подправить, сжать или растянуть,… … Энциклопедический словарь

    История науки … Википедия

    История науки По тематике Математика Естественные науки … Википедия

    - (греч. geodaisia, от ge Земля и daio делю, разделяю), наука об определении положения объектов на земной поверхности, о размерах, форме и гравитационном поле Земли и других планет. Это отрасль прикладной математики, тесно связанная с геометрией,… … Энциклопедия Кольера

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Далее будет рассматриваться именно этот случай, если не оговорено обратное. Если основание конуса представляет собой многоугольник , конус становится пирамидой .

"== Связанные определения ==

  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса .
  • Объединение образующих конуса называется образующей (или боковой ) поверхностью конуса . Образующая поверхность конуса является конической поверхностью .
  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса .
  • Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым . При этом прямая, соединяющая вершину и центр основания, называется осью конуса .
  • Косой (наклонный ) конус - конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.
  • Круговой конус - конус, основание которого является кругом.
  • Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой , содержащей катет (эта прямая представляет собой ось конуса).
  • Конус, опирающийся на эллипс , параболу или гиперболу , называют соответственно эллиптическим , параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
  • Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом .

Свойства

  • Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.
  • Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.
  • Телесный угол при вершине прямого кругового конуса равен
где - угол раствора конуса (то есть удвоенный угол между осью конуса и любой прямой на его боковой поверхности).
  • Площадь боковой поверхности такого конуса равна
где - радиус основания, - длина образующей.
  • Объем кругового конуса равен
  • Пересечение плоскости с прямым круговым конусом является одним из конических сечений (в невырожденных случаях - эллипсом, параболой или гиперболой, в зависимости от положения секущей плоскости).

Обобщения

В алгебраической геометрии конус - это произвольное подмножество векторного пространства над полем , для которого для любого

См. также

  • Конус (топология)

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямой круговой конус" в других словарях:

    Прямой круговой конус. Прямой и … Википедия

    Прямой круговой конус Конус тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих … Википедия

    Конус - Прямой круговой конус. КОНУС (от латинского conus, от греческого konos шишка), геометрическое тело, ограниченное круглой конической поверхностью и плоскостью, не проходящей через вершину конической поверхности. Если вершина лежит на… … Иллюстрированный энциклопедический словарь

    - (лат. conus; греч. konos). Тело, ограниченное поверхностью, образующейся от обращения прямой, коей один конец неподвижен (вершина конуса), а другой двигается по окружности данной кривой; с виду похож на сахарную голову. Словарь иностранных слов,… … Словарь иностранных слов русского языка

    КОНУС - (1) в элементарной геометрии геометрическое тело, ограниченное поверхностью, образуемой движением прямой (образующей конуса) через неподвижную точку (вершину конуса) вдоль направляющей (основание конуса). Образуемая поверхность, заключённая между … Большая политехническая энциклопедия

    - (прямой круговой) геометрическое тело, образуемое вращениемпрямоугольного треугольника около одного из катетов. Гипотенузаназывается образующей; неподвижный катет высотой; круг, описываемыйвращающимся катетом основанием. Боковая поверхность К.… … Энциклопедия Брокгауза и Ефрона

    - (прямой круговой К.) геометрическое тело, образуемое вращением прямоугольного треугольника около одного из катетов. Гипотенуза называется образующей; неподвижный катет высотой; круг, описываемый вращающимся катетом основанием. Боковая поверхность …

    - (прямой круговой) геометрическое тело, образуемое вращением прямоугольного треугольника около одного из катетов. Гипотенуза называется образующей; неподвижный катет высотой; круг, описываемый вращающимся катетом основанием. Боковая поверхность К … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (лат. conus, от греч. konos) (математика), 1) К., или коническая поверхность, геометрическое место прямых (образующих) пространства, соединяющих все точки некоторой линии (направляющей) с данной точкой (вершиной) пространства.… … Большая советская энциклопедия

Конус (с греческого «konos») сосновая шишка. Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Конус (круговой конус) – тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Отрезки, которые соединяют вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, которая соединяет вершину конуса с центром основания, перпендикулярна плоскости основания. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через образующую конуса и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Объём конуса равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Площадь боковой поверхности конуса можно найти по формуле:

S бок = πRl,

Площадь полной поверхности конуса находится по формуле:

S кон = πRl + πR 2 ,

где R – радиус основания, l – длина образующей.

Объём кругового конуса равен

V = 1/3 πR 2 H,

где R – радиус основания, Н – высота конуса

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)l,

Площадь полной поверхности усеченного конуса можно найти по формуле:

S кон = πR 2 + πr 2 + π(R + r)l,

где R – радиус нижнего основания, r – радиус верхнего основания, l – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2),

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Усеченный конус получается, если от конуса отсечь меньший конус плоскостью, параллельной основанию (рис. 8.10). В усеченном конусе два основания: "нижнее" - основание исходного конуса - и “верхнее" - основание отсекаемого конуса. По теореме о сечении конуса - основания усеченного конуса подобны.

Высотой усеченного конуса называется перпендикуляр, опущенный из точки одного основания на плоскость другого. Все такие перпендикуляры равны (см. п. 3.5). Высотой называют также их длину, т. е. расстояние между плоскостями оснований.

Усеченный конус вращения получается из конуса вращения (рис. 8.11). Поэтому его основания и все параллельные им его сечения - круги с центрами на одной прямой - на оси. Усеченный конус вращения получается вращением прямоугольной трапеции вокруг ее боковой стороны, перпендикулярной основаниям, или вращением

равнобедренной трапеции вокруг оси симметрии (рис. 8.12).

Боковая поверхность усеченного конуса вращения

Это принадлежащая ему часть боковой поверхности конуса вращения, из которого он получен. Поверхность усеченного конуса вращения (или его полная поверхность) состоит из его оснований и его боковой поверхности.

8.5. Изображения конусов вращения и усеченных конусов вращения.

Прямой круговой конус рисуют так. Сначала рисуют эллипс, изображающий окружность основания (рис. 8.13). Затем находят центр основания - точку О и вертикально проводят отрезок РО, который изображает высоту конуса. Из точки Р проводят к эллипсу касательные (опорные) прямые (практически это делают на глаз, прикладывая линейку) и выделяют отрезки РА и РВ этих прямых от точки Р до точек касания А и В. Обратите внимание, что отрезок АВ - это не диаметр основания конуса, а треугольник АРВ - не осевое сечение конуса. Осевое сечение конуса - это треугольник АРС: отрезок АС проходит через точку О. Невидимые линии рисуют штрихами; отрезок ОР часто не рисуют, а лишь мысленно намечают, чтобы изобразить вершину конуса Р прямо над центром основания - точкой О.

Изображая усеченный конус вращения, удобно нарисовать сначала тот конус, из которого получается усеченный конус (рис. 8.14).

8.6. Конические сечения. Мы уже говорили, что боковую поверхность цилиндра вращения плоскость пересекает по эллипсу (п. 6.4). Также и сечение боковой поверхности конуса вращения плоскостью, не пересекающей его основание, является эллипсом (рис. 8.15). Поэтому эллипс называется коническим сечением.

К коническим сечениям относятся и другие хорошо известные кривые - гиперболы и параболы. Рассмотрим неограниченный конус, получающийся при продолжении боковой поверхности конуса вращения (рис. 8.16). Пересечем его плоскостью а, не проходящей через вершину. Если а пересекает все образующие конуса, то в сечении, как уже сказано, получаем эллипс (рис. 8.15).

Поворачивая плоскость ОС, можно добиться того, чтобы она пересекала все образующие конуса К, кроме одной (которой ОС параллельна). Тогда в сечении получим параболу (рис. 8.17). Наконец, вращая плоскость ОС дальше, переведем ее в такое положение, что а, пересекая часть образующих конуса К, не пересекает уже бесконечное множество других его образующих и параллельна двум из них (рис. 8.18). Тогда в сечении конуса К с плоскостью а получаем кривую, называемую гиперболой (точнее, одну ее "ветвь"). Так, гипербола, которая является графиком функции частный случай гиперболы - равнобочная гипербола, подобно тому как окружность является частным случаем эллипса.

Любые гиперболы можно получить из равнобочных с помощью проектирования, аналогично тому как эллипс получается параллельным проектированием окружности.

Чтобы получить обе ветви гиперболы, надо взять сечение конуса, имеющего две "полости", т. е. конуса, образованного не лучами, а прямыми, содержащими образующие боковой поверхности конуса вращения (рис. 8.19).

Конические сечения изучали еще древнегреческие геометры, и их теория была одной из вершин античной геометрии. Наиболее полное исследование конических сечений в древности было проведено Аполлонием Пергским (III в. до н.э.).

Имеется ряд важных свойств, объединяющих в один класс эллипсы, гиперболы и параболы. Например, ими исчерпываются "невырожденные", т. е. не сводящиеся к точке, прямой или паре прямых, кривые, которые задаются на плоскости в декартовых координатах уравнениями вида

Конические сечения играют важную роль в природе: по эллиптическим, параболлическим и гиперболическим орбитам движутся тела в поле тяготения (вспомните законы Кеплера). Замечательные свойства конических сечений часто используются в науке и технике, например, при изготовлении некоторых оптических приборов или прожекторов (поверхность зеркала в прожекторе получается вращением дуги параболы вокруг оси параболы). Конические сечения можно наблюдать как границы тени от круглых абажуров (рис. 8.20).